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Abstract

A meshless approach to the Boundary Element Method in which only a scattered set of points is used to approximate the solution is

presented. Moving Least Square approximations are used to build a Partition of Unity on the boundary and then used to construct, at low cost,

trial and test functions for Galerkin approximations. A particular case in which the Partition of Unity is described by linear boundary element

meshes, as in the Generalized Finite Element Method, is then presented. This approximation technique is then applied to Galerkin boundary

element formulations. Finally, some numerical accuracy and convergence solutions for potential problems are presented for the singular,

hypersingular and symmetric approaches.
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1. Introduction

In the last decade a number of meshless procedures have

been proposed in the FEM community. These include: The

Smoothed Particle Hydrodynamics Method, The Diffuse

Element Method [1], Wavelet Galerkin Method [2], The

Element Free Galerkin Method, (EFGM), [3], Reproducing

Kernel Particle Method (RKPM) [4], The Meshless Local

Petrov–Galerkin Method [5], the Natural Element Method

[6], Partition of Unity Method [7], and the hp-Cloud Methods

e.g. [8,9]. The latter has the further appeal of naturally

introducing a procedure for performing hp-adaptivity, in a

very flexible way, avoiding the construction of functions by

sophisticated hierarchical techniques. The advantages of

these procedures are, however, balanced by increased

computational cost since a mesh is still needed for integration

purposes and, at each integration point, the Partition of Unity

must be computed since the covering of each point is

arbitrary. The cost can be reduced by using a linear

Lagrangian Partition of Unity as in the Finite Element

Method as proposed by Oden, Duarte and Zienkiewicz [10]

and later denoted by the Generalized Finite Element Method

[11], (GFEM), which can be understood as a Generalization

of the Partition of Unity Method [7]. More recently, Sukumar

and his co-workers [12], proposed the Extended Finite

Element Method, (XFEM), which presents similar charac-

teristics as the GFEM.

The meshless procedures have also attracted the attention

of an increasing number of researchers within the Boundary

Element community. Among many contributions, we may

cite the Boundary Node Method [13–15], Local Boundary

Integral Equation [16,17], Boundary Particle Method [18],

Radial Point Interpolation Meshless Method (Radial PIM)

[19–22], and Boundary Cloud Method (BCM) [23]. Most of

the meshless methods use approximation functions along the

lines of the Moving Least Squares Method [24] and of the

EFGM.

The present work is an extension of the hp-Cloud Method

in order to apply it to the Boundary Element Method,

following the path presented in [25].

Hp-Cloud approximations have been proved to be more

efficient than those of the EFGM, [9], [26], and for this

reason they were used in [25]. Later, Oden, Duarte and

Engineering Analysis with Boundary Elements 29 (2005) 494–510

www.elsevier.com/locate/enganabound

0955-7997/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.enganabound.2004.12.003

* Corresponding author. Fax: C55 48 331 9277.

E-mail addresses: lauro@grante.ufsc.br (L.C. Nicolazzi), clovis@puc-

minas.br (C.S. Barcellos), fancello@grante.ufsc.br (E.A. Fancello), arman-

do.duarte@ualberta.ca (C.A.M. Duarte).

http://www.elsevier.com/locate/enganabound


Zienkiewicz, [10], proposed that, instead of using circles or

rectangles for defining the Clouds around each node, it

would be more convenient to use linear finite element

meshes. Here the Clouds associated to node ‘i’ would be

built by the union of the ‘elements’ connected to this node.

This concept greatly reduces the number of floating point

operations, since the Partition of Unity is known beforehand

and allows standard integration routines for integrating the

nodal matrices. This new scheme led to the Generalized

Finite Element Method, GFEM.

In this paper, some choices of Partition of Unity are

discussed and one of them is selected to be applied to the

Galerkin Boundary Element Method. This Partition of Unity

is then enriched by a set of functions like polynomials of

equal or unequal degrees in different directions, particular

solutions, or other reasonable functions to span the

approximation space. A choice of error indicators in order

to adaptively enrich the Partition of Unity is here described.

This new technique is hereafter called the Generalized

Galerkin Boundary Element Method (GGBEM). The L-

shaped domain and the Motz potential problems are solved

by the Classic (singular), Hyper and Symmetric methods

and their results for both uniform and adaptive enrichment

are compared and discussed.

The remainder of this paper is outlined as follows:

Section 2 summarizes the Galerkin boundary integral

equations for potential 2D problems; Section 3 describes

the main topics of the Moving Least Squares Method,

MLSM; Section 4 presents the hp-Cloud Partition of Unity

functions and their enrichment is described in Sections 5

and 6 discusses some of the possible MLSM weighting

functions and one in particular which leads to the

generalized formulations; Section 7 presents an error

indicator for the Galerkin boundary integral equations;

Section 8 summarizes the selected integration and regular-

ization procedures; Section 9 presents results of the

proposed formulation for the L-shaped domain and the

Motz potential problems; and the conclusions are given in

Section 10.

2. Galerkin boundary elements

Since this work is mainly focused on the numerical

characteristics of the approximation method, a simple

differential equation in two dimensions is dealt with here.

Let us define a domain U3R2 by a Lipschitz boundary

GZGDhGN, where the Dirichlet, GD, and Neumann, GN,

parts of the boundary have null intersection, GDhGNZ.

Equilibrium is stated by the Laplace equation with Dirichlet

and Neumann boundary conditions

KDTðxÞ Z 0 on U; TðxÞ Z f on GD;

vT

vn
Z g on GN;

(1)

where by T we denote the unknown potential field and by

vT/vn its normal derivative.

The Galerkin or Variational approach in boundary

integral equations [27] is given by
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and also by an analogous expression for the normal

derivative,
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In these expressions, 4s are the test and trial

functions, c1 and c2 are constants determined from the

Jump Term, d and x are the source and field point

locations and G is a fundamental solution. The set of

algebraic equations obtained from expression (2) is the

starting point of the classical Galerkin approach. When

Eq. (3) is used, an alternative set of equations is

obtained, usually called the Hypersingular Galerkin

approach. The Symmetric Galerkin approximation results

from a choice of equations from both previous sets. In

this work these approaches are, respectively, denoted by

Classic, Hyper and Symmetric. The characteristics of the

approximation space as well as the methodology of

construction of the approximation functions is the focus

of the next section.

3. The moving least squares method applied

to the cloud method

The Moving Least Square Method (MLS) [24], is a

generalization of the conventional Least Squares Method

and has the important property of allowing us to weight, in

different forms, the information at arbitrarily placed points

in the domain. The next paragraphs present a brief

description of the method.

Let a body occupying a domain U2Rn, nZ1, 2,

or 3,with contour G, and let fa, aZ0,1,2,3,.N, be
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