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Abstract

This paper presents a numerical technique for the calculation of stress intensity factor as a function of time for coupled thermoelastic

problems. In this task, effect of inertia term considering coupled theory of thermoelasticity is investigated and its importance is shown.

A boundary element method using Laplace transform in time-domain is developed for the analysis of fracture mechanic considering

dynamic coupled thermoelasticity problems in two-dimensional finite domain. The Laplace transform method is applied to the time-domain

and the resulting equations in the transformed field are discretized using boundary element method. Actual physical quantities in time-

domain is obtained, using the numerical inversion of the Laplace transform method.

The singular behavior of the temperature and stress fields in the vicinity of the crack tip is modeled by quarter-point elements. Thermal

dynamic stress intensity factor for mode I is evaluated using J-integral method. By using J-integral method effects of inertia term and other

terms such as strain energy on stress intensity factor may be investigated separately and their importance may be shown. The accuracy of the

method is investigated through comparison of the results with the available data in literature.
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1. Introduction

In recent years, there has been a great interest in the

distribution of thermal stress near to the vicinity of a crack

in the interior of an elastic solid, mainly because of its

importance in theories of brittle and ductile fracture and

many potential applications in industrial facilities. In

sensitive equipment such as pressure vessels, the fracture

of a component, due to sudden cooling, say, can lead to

complete failure. The possibility of a crack-induced failure

following thermal shock may be assessed by calculating the

thermal stress intensity factors for the cracked component.

Just now there is no report on the evaluation of the

dynamic stress intensity factor for thermal shock problems

with the coupled thermoelastic assumption with the inertia

term. The previous works are limited to evaluate the stress

intensity factor and/or the thermal shock stress intensity

factor for transient or coupled thermoelasticity problems

where the inertia term is ignored.

In the classical study of thermoelastic crack problems,

the theoretical solutions are available only for very few

problems in which cracks are contained in infinite media

under special thermal loading conditions, such as in the

work of Kassir and Bergman [1]. For cracked bodies of finite

dimensions, exact solutions are impossible to obtain.

Wilson and Yu [2] employed the finite element method to

deal with these problems. The method is combined with the

modified J-integral theory proposed by them. The other

prevailing methods employed by Nied [3] and Chen and

Weng [4] is based on the concept of principle superposition.

That is, in the absence of a crack, the thermal loading is

replaced by a traction force, which is equivalent to the

internal force at the prospective crack face.

Uncoupled transient thermoelasticity has been the

subject of many investigations with a boundary element

method of analysis. For instance, Tanaka et al. [5]

implemented a volume based thermal body approach.

However, volume discretization removes some of the

advantages of the standard BEM. Sladek and Sladek [6]

presented a series of papers on coupled thermoelasticity that
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included a time-domain method. The initial time-domain

boundary integral equation, were presented in a boundary

only formulation, but the primary variables include time

derivatives. Sladek and Sladek [7] later presented a

boundary integral formulation in terms of regular primary

variables; they used inverse Laplace transforms on their

previous equations. Raveendra et al. [8] also used a sub

region technique to solve crack problems using a boundary

only formulation. Hosseini-Tehrani et al. [9] presented a

boundary element formulation for dynamic crack analysis

considering coupled theory of thermoelasticity. In this

article using crack opening displacement method,

conditions where the inertia term plays an important role

is discussed as well as the effects of coupling parameter on

crack intensity factor variations.

This paper presents a boundary element formulation for

the crack analysis considering coupled theory of thermo-

elasticity. In this work an isotropic and homogeneous

material, in two-dimensional plain strain geometry with an

initial edge crack on its boundary is considered. The body is

exposed to a thermal shock on its boundary and the resulting

thermal stress waves are investigated through the coupled

thermoelastic equations. Due to the short time interval of the

imposed thermal shock, the Laplace transforms method is

employed to model the time variable in the boundary

element formulation. The discretized forms of the equations

are obtained by the approximation of boundary variations by

quadratic elements, and the quarter point singular element is

used at the crack tip. The present approach is used to

evaluate the thermal dynamic stress intensity factor

(TDSIF) at the first opening crack mode. An infinite strip

with a crack on its surface under sudden cooling is

considered. TDSIF is obtained using J-integral method.

For thermal shock loading, the time dependent TDSIF is

obtained using the Durbin [10] method. The results are

compared with the available transient results. Effects of

different terms such as strain energy and, inertia term on

crack intensity factor are discussed using coupled and

uncoupled theories of thermoelasticity.

2. Governing equations

A homogeneous isotropic thermoelastic solid is

considered. In the absence of body forces and heat

generation, the governing equations for coupled theory of

thermoelasticity in time-domain are:

ðl CmÞuj;ij Cmui;jj KgT;i Kr€ui Z 0 (1)

kT;jj Krce
_T KgT0 _uj;j Z 0 (2)

The dimensionless variables are defined as:
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Eqs. (1) and (2) takes the form (dropping the hat for

convenience):

m

l C2m
ui;jj C

l Cm

l C2m
uj;ij KT;i K €ui Z 0 (4)

T;jj K _T K
T0g2

rceðl C2mÞ
_uj;j Z 0 (5)

Transferring Eqs. (4) and (5) to the Laplace domain

yields:

m

l C2m
~ui;jj C

l Cm

l C2m
~uj;ij K ~T ;i Ks2 ~ui Z 0 (6)

~T ;jj Ks ~T K
T0g2
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s ~uj;j Z 0 (7)

Nomenclature

E modulus of elasticity

CsZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlC2mÞ=r

p
velocity of the longitudinal stress

wave

CZT0g2=rceðlC2mÞ coupling parameter

ce specific heat at constant strain

nj a components of outward normal vector to the

boundary

k thermal conductivity

KI mode I stress intensity factor

�qn heat flux vector on the boundary

s Laplace transform parameter

T temperature

T0 reference temperature
�T temperature on the boundary

t time

ui components of displacement vector

V�
ik fundamental solution tensor

($) time differentiation

(,i) partial differentiation with respect to xi (iZ1,2)

Greek symbols

aZk/(rceCs) unit length

g stress temperature modulus

l, m Lame’s constants

u Poisson ratio

r mass density

3ij the components of strain tensor

sij the components of stress tensor

�ti traction vector on the boundary
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