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Abstract

This paper considers the problem of an infinite, isotropic viscoelastic plane containing an arbitrary number of randomly distributed, non-

overlapping circular holes and isotropic elastic inclusions. The holes and inclusions are of arbitrary size. All inclusions are assumed to be

perfectly bonded to the material matrix but the elastic properties of the inclusions can be different from one another. The Kelvin model is

employed to simulate the viscoelastic plane. The numerical approach combines a direct boundary integral method for a similar problem of an

infinite elastic plane containing multiple circular holes and elastic inclusions described in [Crouch SL, Mogilevskaya SG. On the use of

Somigliana’s formula and Fourier series for elasticity problems with circular boundaries. Int J Numer Methods Eng 2003;58:537–578], and a

time-marching strategy for viscoelastic material analysis described in [Mesquita AD, Coda HB, Boundary integral equation method for

general viscoelastic analysis. Int J Solids Struct 2002;39:2643–2664]. Several numerical examples are given to verify the approach. For

benchmark problems with one inclusion, results are compared with the analytical solution obtained using the correspondence principle and

analytical Laplace transform inversion. For an example with two holes and two inclusions, results are compared with numerical solutions

obtained by commercial finite element software—ANSYS. Benchmark results for a more complicated example with 25 inclusions are also

given.
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1. Introduction

The behavior of fiber-reinforced composite materials is,

in general, time-dependent, especially in cases where one or

more components of the material are made of polymers.

Many researchers have studied the overall behavior of such

materials, calculating their effective viscoelastic properties

from the effective elastic properties by using the correspon-

dence principle [3–6]. Examples of direct micromechanical

simulation of the time-dependent behavior of composite

materials (where all the constituents of the material are

included in the model) are rather limited. We are aware of

only two papers where a viscoelastic material with

inclusions of arbitrary shape was modeled in a direct

manner. Based on a fundamental solution for an

infinite viscoelastic body, Zatula and Lavrenyuk [7] and

Kaminskii et al. [8] obtained a system of boundary-temporal

integral equations, which was solved by using a collocation

approach that adopted piecewise constant approximations

for the unknown traction components at each straight

element. The results were given for the case of two

inclusions only. The present paper is concerned with the

problem of multiple randomly distributed, closely spaced

circular holes and inclusions. For this type of problem the

approach suggested in [7] and [8] would be extremely

expensive.

A new and robust technique for the problem of an elastic

plane with multiple randomly distributed circular inclusions

was suggested in [9] using the complex variable formalism.

A similar problem involving holes as well as inclusions was

solved in [1] using real variables. Both approaches are based

on the two-dimensional version of Somigliana’s formula.

The tractions on the boundaries of the inclusions or the

displacements on the boundaries of the holes are approxi-

mated by truncated Fourier series. In [10], the complex

variable variant of the technique has been extended for
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holes. Further generalization of these approaches to account

for imperfect interfaces and the effect of external boundaries

are considered in [11–14]. An infinite Fourier series

provides the analytic solution for this class of problems;

apart from round-off, the only errors introduced into the

solution are due to truncation of the series. This method is

very efficient and effective, and can successfully treat

problems with numerous inclusions and holes.

In the present paper, the real variables variant of this

approach is extended to the important case of composite

materials characterized by a linear viscoelastic matrix

(binder) and elastic inclusions (fillers). The method

presented in this paper combines the approach suggested

in [1] with the time-marching procedure described for

viscoelastic analysis by Mesquita and Coda [2,15–20]. The

Kelvin model [21] is employed to simulate the viscoelastic

plane.

Several examples are given to illustrate the accuracy and

versatility of the approach. They include: (i) a benchmark

problem of one inclusion; (ii) an example of two holes and

two inclusions; and (iii) a more complicated example

involving an array of 25 inclusions.

2. Problem formulation

Consider an infinite viscoelastic plane containing an

arbitrary number of non-overlapping circular holes and

circular elastic inclusions, as shown in Fig. 1. The

viscoelastic plane is subjected to a constant stress field sN

at infinity. The holes and inclusions are arbitrarily located

and are centered at (xi, yi), iZ1,.,K. The holes and

inclusions have radii ri, iZ1,.,K. The elastic properties of

the inclusions (their shear moduli Gi and Poisson’s ratios ni,

iZ1,.,K) can be different from each other. The bond

between the inclusions and the surrounding material (the

matrix) is assumed to be perfect, which means that the

tractions are equilibrated and the displacements are continu-

ous across the interfaces between the inclusions and the

matrix. The viscoelastic plane is characterized by elasticity

and viscosity parameters that depend on the particular

viscoelastic model used. In this study, the Kelvin model is

used [21].

3. Kelvin model

In one dimension, the Kelvin model consists of a spring

and a dashpot connected in parallel as shown in Fig. 2.

Extending this to two-dimensions (plane strain), the elastic

stress se
ij and viscous stress sv

ij can be expressed in terms of

corresponding strain components 3lm, and their rate _3lm as

follows

se
ij Z Clm

ij 3lm; sv
ij Z hlm

ij _3lm (1)

where i, j, l, m are 1, 2 and the repeated indexes imply

summation. Clm
ij and hlm

ij contain the elastic compliance

factors and the viscous constitutive parameters. For the

isotropic case considered here, Clm
ij and hlm

ij can be written as

follows [2]:

Clm
ij Z ldijdlm Cmðdildjm CdimdjlÞ;

hlm
ij Z qlldijdlm Cqmmðdildjm CdimdjlÞ

(2)

where d is the Kronecker delta symbol and where Lamé’s

parameters l and m are given as

l Z
nE

ð1 CnÞð1 K2nÞ
; m Z G Z

E

2ð1 CnÞ
(3)

in which n is Poisson’s ratio and E and G are Young’s

modulus and shear modulus, respectively. Also in (2), ql

and qm are the hydrostatic and deviatoric viscosity

coefficients; these parameters have dimensions of time.

Following Mesquita and Coda [2,15,16,19,20], the

assumption that qlZqmZg is made (this simplification is

made in order to obtain only boundary values in the

governing integral equations for the problem). With this

assumption, the constitutive equation for the Kelvin model

becomes

sij Z Clm
ij 3lm CgClm

ij _3lm (4)

4. Integral equations

The system of integral equations for the problem is

obtained by superposition of the equations for two distinct

problems: (i) an infinite viscoelastic plane with circular

holes, and (ii) circular elastic inclusions. For the first

xi, yi
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Fig. 1. An infinite viscoelastic plane with multiple circular holes and elastic

inclusions.
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Fig. 2. Kelvin model (one-dimensional representation).
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