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Abstract

The solution of an impermeable penny-shaped crack subjected to a concentrated thermal load (prescribed point temperature) applied

arbitrarily at the crack surfaces is derived using the generalized potential theory method. The integral equation governing the temperature

field is found to have the same structure as that for the elastic punch problem and the integro-differential equations related to the electroelastic

field are similar to that reported for the elastic crack problem. Significant solutions to these integro-differential equations are obtained by

generalizing the previous results available in literature. Exact three-dimensional expressions for the full-space thermo-electro-elastic field are

finally obtained by simple differentiation, all in terms of elementary functions. The exact analysis for a permeable crack is also presented and

discussed. The obtained point temperature solutions play an important role in the related BEM analysis.
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1. Introduction

The point source solutions or Green’s functions play an

important role in solving boundary value problems

frequently encountered in science and engineering [45].

Especially, they comprise the kernels in boundary element

analyses [5,47]. In elasticity, the well-known solution due to

a concentrated force is the Kelvin solution for an infinite

isotropic elastic body [26]. The later Mindlin solution is for

a semi-infinite isotropic elastic body [30]. For recent several

decades, much attention has been paid to Green’s functions

of anisotropic elastic bodies. In particular, for elastic

materials characterizing transverse isotropy, Pan and Chou

[37–39] derived exact analytical expressions for solutions of

problems of a concentrated force arbitrarily applied in

infinite, semi-infinite and two-phase infinite spaces.

For materials with general anisotropy, Pan et al. [34,35,

50–52] developed a systematic method for the derivation of

Green’s functions for various configurations by applying the

generalized Stroh’s formalism and Fourier transforms.

Due to the intrinsic coupling effect between elastic

deformation and electric field, piezoelectric materials have

been widely used not only as single-functional apparatus

such as actuators, sensors, transducers, etc. but also being

constituents of smart structures with multiple functions [20,

27,28,49]. The mechanics of piezoelectric materials have

been of intense research effort in the past two decades, and

consequently, a lot of works on Green’s functions have been

reported [20]. For anisotropic piezoelectric media, Chen [3]

and Chen and Lin [4] expressed the infinite body Green’s

functions and their derivatives of first and second degree as

the contour integrals over the unit circle by using three-

dimensional Fourier transforms; but very cumbersome

computation was involved [5]. Pan et al. [33,36] success-

fully extended their previous work on anisotropic elastic

materials to generally anisotropic piezoelectric solids. For

transversely isotropic piezoelectric materials, Dunn [21]

presented explicit expressions of Green’s functions for an

infinite solid by taking Radon transforms, coordinate

transformation and evaluation of residues in sequence.
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The expressions of solution are very complicated and not

only is it difficult to be verified but also inconvenient to be

used. Dunn and Wienecke [22] presented a closed-form

solution, which was later extended to a semi-infinite solid

[23]. Ding et al. [18] obtained the closed-form fundamental

solution by employing the body potential formulae through

the use of integration method. Based on the general solution

proposed in Ref. [17], Ding et al. [19] derived the closed

form Green’s functions for a two-phase transversely

isotropic piezoelectric space by using the trial-and-error

method. Green’s functions for an infinite space, and a semi-

infinite space with different boundary conditions can be

easily derived from the results presented in Ding et al. [19].

Pan and Han [32] recently applied the system of vector

functions and the propagator-matrix method to derive

Green’s functions in multilayered and transversely isotropic

piezoelectric half-spaces. Bai et al. [2] reported three-

dimensional elastodynamic Green’s functions for a lami-

nated piezoelectric cylinder. There are also many papers on

two-dimensional problems of piezoelectric materials,

including [31,40,41,46], among others.

One of the common piezoelectric materials is the

polarized ceramics, which usually suffers from failure due

to fracture because of its brittleness. Many contributions to

fracture of piezoelectric materials have been made [16,53].

For transversely isotropic piezoelectric materials, Chen et al.

[7–9,12–15,25] derived some exact solutions of crack

problems by generalizing the potential theory method

developed by Fabrikant [24]. Note that Fabrikant’s method

is very powerful in deriving exact three-dimensional

solutions of the mixed boundary-value problems such as

those appearing in crack and contact mechanics. As noted by

Fabrikant [24], these exact solutions, which are expressed in

terms of elementary functions, usually can not be obtained

using the integral transforms or other classical treatments

[43,44] since the mathematical manipulations involved are

extremely difficult. Recently, Chen et al. [6,11] made a

further generalization to Fabrikant’s method by considering

the thermal effect. The exact expressions for field variables in

a full space containing a penny-shaped crack with a uniform

temperature prescribed at the crack faces are obtained in

terms of elementary functions for elastic, piezo-elastic and

magneto-piezo-elastic media.

In particular, Chen [6] presented a general solution for

transversely isotropic thermo-piezo-elastic media in terms of

five harmonic functions only and derived an exact solution

for a penny-shaped crack subjected to uniform temperature

load. The problem studied is thus axisymmetric and

relatively simple. The potential theory method for non-

axisymmetric thermoelastic crack problem was recently

proposed by Chen et al. [10], where the crack is subjected to a

point temperature load arbitrarily applied on the crack

surfaces. In this study, the similar crack problem in a

transversely isotropic thermo-piezo-elastic medium is inves-

tigated using the general solution derived in Ref. [6]. Note

that the analysis presented in Ref. [6] is only confined to

the impermeable cracks, i.e. the normal electric displacement

is assumed to vanish at the crack surfaces. The permeable

electric conditions, for which the normal electric displace-

ment and electric potential are continuous across the crack,

also have been widely employed in the literature [16]. Both

the impermeable and permeable electric conditions are

considered here. Exact expressions for the three-dimensional

thermo-piezo-elastic field are derived. These expressions

will be very useful in the succeeding analysis offinite cracked

body using BEM. When the impermeable crack is subjected

to a uniform temperature load, the results agree well with that

obtained in Ref. [6].

2. General solutions

The basic equations of a transversely isotropic piezo-

electric body with thermal effect can be found in Ref. [6]. In

Cartesian coordinates (x,y,z), with the xy-plane parallel to

the plane of isotropy, the constitutive relations are
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where, F, Di, and T are the electric potential, electric

displacement components, and the incremental temperature

(TZ0 corresponds to the state of vanishing stresses and

electric displacements), respectively; si and tij are the

normal and shear stresses, respectively; u, v and w are

components of the mechanical displacement in x-, y- and

z-directions, respectively; cij, 3ij, eij, and p3 are the elastic,

dielectric, piezoelectric, and pyroelectric constants, respect-

ively; and bi are the thermal modules. Note that we have an

additional relation c11 Zc12 C2c66 for transverse isotropy.
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