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a b s t r a c t

Background: The association of genotyping information with common traits is not satisfactorily solved.
One of the most complex traits is pain and association studies have failed so far to provide reproducible
predictions of pain phenotypes from genotypes in the general population despite a well-established
genetic basis of pain. We therefore aimed at developing a method able to prospectively and highly accu-
rately predict pain phenotype from the underlying genotype.
Methods: Complex phenotypes and genotypes were obtained from experimental pain data including four
different pain stimuli and genotypes with respect to 30 reportedly pain relevant variants in 10 genes. The
training data set was obtained in 125 healthy volunteers and the independent prospective test data set
was obtained in 89 subjects. The approach involved supervised machine learning.
Results: The phenotype–genotype association was reached in three major steps. First, the pain phenotype
data was projected and clustered by means of emergent self-organizing map (ESOM) analysis and subse-
quent U-matrix visualization. Second, pain sub-phenotypes were identified by interpreting the cluster
structure using classification and regression tree classifiers. Third, a supervised machine learning algo-
rithm (Unweighted Label Rule generation) was applied to genetic markers reportedly modulating pain
to obtain a complex genotype underlying the identified subgroups of subjects with homogenous pain
response. This procedure correctly identified 80% of the subjects as belonging to an extreme pain pheno-
type in an independently and prospectively assessed cohort.
Conclusion: The developed methodology is a suitable basis for complex genotype–phenotype associations
in pain. It may provide personalized treatments of complex traits. Due to its generality, this new method
should also be applicable to other association tasks except pain.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Human genotyping information elucidates pathogenetic mech-
anisms and provides clinical guidance for disease management.
However, the association of genotyping information with common
traits is not resolved satisfactorily [1]. Especially in complex traits
emerging from multifactorial mechanisms, single genetic variants
often produce only small effect sizes [2]. This weakens the utility
of genotyping information [1,3].

One of the most challenging traits is pain. It involves a complex
pathophysiology [4] underlying its sensory, affective, motor, vege-
tative and emotional components [5] reflected in the large network
of underlying molecular nociceptive pathways [6]. The genetic

basis of pain has been well established [7–9]. However, so far, asso-
ciation studies largely failed to provide reproducible predictions of
phenotypes from genotypes in the average population [10].
Roughly this is caused by common genetic factors reciprocally can-
celing out their phenotypic consequences [11] and usually exerting
only small effects [12]. To these poor results probably adds that
current analytical methods for genotype phenotype association in
pain are often insufficient. While the complexity of pain is increas-
ingly accepted [13], its high-dimensional phenotypes [14] and
underlying genotypes [11] are mainly subjected to low-dimen-
sional analyses. Indeed, it becomes clear that it is advantageous
to view pain as a complex phenotype when clustering individuals
for their responses to different pain tests [15–17]. However, ap-
proaches applied so far have failed to provide a conclusive solution
to pain genotype–phenotype association problems. This is proba-
bly due to a number of methodological shortcomings. Firstly, the-
oretical reasons suggest that the presently used clustering
techniques should be revised in favor of those that make no prior
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assumptions about the cluster structure, since the patterns of pain
responses across different tests provide no indication of a particular
cluster form. Secondly, clustering approaches used so far have been
restricted to a mere description of the pattern of pain measures
among individuals, without providing analyses of clinically relevant
phenotypes that could be used for predictions by genotypes (for
example, see [16], page 3, Table 1). Thirdly, genotype associations
were mostly made in separate tests of single markers for phenotypic
effects, without regard to the complexity of the genotypes [11].

Nowadays, more sophisticated bioinformatics tools are available
to successfully approach this complex problem. Besides automated
clustering of complex data, the bioinformatics toolbox also contains
machine leaning methods for a subsequent knowledge-generation
out of the clustering. In the present work, we aimed at developing
a methodology that provides a basis for genotype–phenotype asso-
ciations in complex traits. The methodology was developed to
address several shortcomings of current approaches to genotype–
phenotype associations and was presently applied to the complex
trait of pain. It incorporates the complexity of both pain pheno-
types and pain genotypes and is able to identify subgroups of indi-
viduals with similar pain phenotypes who share genotypic
markers. We show that complex genotypes allow for correct pro-
spective identification of up to 80% of the subjects who belong to
a particular pain phenotype cluster. However, as a limited set of
genotypes and phenotypes was used, the intention of this analysis
rather was to pursue a clear methodological focus for the identifi-
cation of complex genotypes and phenotypes and their associa-
tions than to identify new genotypes as a biological explanation
of the observed pain phenotypes.

2. Methods

2.1. Data sources

2.1.1. Study cohorts
The investigations followed the Declaration of Helsinki on Bio-

medical Research Involving Human Subjects and were approved

by the Ethics Committee of the Medical Faculty of the Goethe –
University, Frankfurt am Main, Germany. All subjects gave written
informed consent. Exclusion criteria employed were: drug intake
less than seven days previously (except oral contraceptives), actual
clinical pain, and concurrent diseases, based on questioning and a
short medical examination.

Available data consisted of two independent data sets obtained
in two independent study cohorts. The first data set, the training
data, had been previously acquired from a random sample of 125
unrelated healthy young Caucasians (69 men, 56 women, mean
age 25 ± 4.4 years) [12,14,18]. At this data set, the genotype–phe-
notype associations were established. To test their prediction, a
new data set was acquired prospectively [19], the test data set,
which was obtained in the same laboratory, from a random sample
of 89 subjects of the same ethnicity and distribution (36 men, 53
women, mean age 25.6 ± 3.9 years).

2.1.2. Phenotyping information
Pain thresholds to four stimuli, including heat, cold, mechanical

and electrical pain, were measured as described previously [14,18].
In brief, heat stimuli were applied using a 3 � 3 cm thermode
(Thermal Sensory Analyzer, Medoc, Ramat Yishai, Israel) placed
onto the skin of the left volar forearm. While increasing tempera-
ture from 32 �C by 0.3 �C/s, the subject was requested to press a
button when heat became painful, which was recorded as pain
threshold and subsequently, the thermode was cooled down. Cold
stimuli were applied similarly, however, with temperatures
decreasing by 1 �C/s from 32 �C to 0 �C. Blunt pressure was exerted
perpendicularly onto the dorsal side of mid-phalanx of the right
middle finger using a pressure algometer (JTECH Medical, Midvale,
USA) with a circular flat probe of 1 cm diameter. While increasing
the pressure by 9 N/cm2 per second, the threshold was reached
when the subject indicated pain. Electrical stimuli employed were
sine-wave stimuli at 5 Hz, applied via two gold electrodes to the
medial and lateral side of the mid-phalanx of the right middle fin-
ger (Neurometer� CPT, Neurotron Inc., Baltimore, MD). As the
intensity of the electrical stimulus was increased from 0 to
20 mA in 0.2 mA/s steps, the subjects were requested to interrupt
the current by releasing a button when perceiving pain. The cur-
rent at which this interruption occurred was the pain threshold.

2.1.3. Genotyping information
Genotyping was done for 20 single nucleotide polymorphisms

(SNPs) [12]. These SNPs and resulting haplotypes, obtained in silico
using PHASE software [20], have been reported previously to mod-
ulate pain [21]. The Hardy–Weinberg equilibrium was preserved in
both cohorts (v2 goodness of fit tests); other details on SNPs and
haplotypes have already been reported elsewhere [12] and are gi-
ven in the Supplemental table to the present publication. Although
restricted, in the light of the currently known >410 ‘‘pain genes’’
[22], the set nevertheless included some major players in nocicep-
tion such as l- and d-opioid receptor genes (OPRM1 [23] and
OPRD1 [24], respectively), transient receptor potential cation chan-
nel genes (TRPV1 [25] and TRPA1 [26]), catechol-O-methyl transfer-
ase (COMT [27,28]), fatty acid amide hydrolase (FAAH [27]),
guanosine 50-triphosphate cyclohydrolase 1 (GCH1 [29]) and vari-
ants of the melanocortin-1 receptor gene (MC1R) associated with
a red-head, -fair-skin phenotype [30,31]. Functional variants were
diagnosed from genomic DNA by means of validated Pyrosequenc-
ing™ assays [12] on a PSQ 96 MA System (Qiagen, Hilden, Ger-
many), with conventionally sequenced samples as controls.

2.2. Data analysis

Analyses were done using Matlab software (MathWorks, Natick,
MS, USA) with functionality expanded by self-developed toolboxes

Table 1
Decision rules (separated by lines) extracted from the CART classifier, providing a
semantic description of the pain phenotypes found by the ESOM/U-matrix cluster
analysis.

Case belongs to IF (rule conditions)

Class 1 IF Heat < 44.55 �C
AND Cold > 19.95 �C

AND Current < 2.65 mA
Class 2 IF Heat < 44.55 �C

AND Pressure < 48.8 N/cm2

Class 3 IF 44.5 6 Heat < 45.5
AND Cold 6 6.35 �C
AND Current < 2.25 mA

Class 4 IF Heat P 44.45 �C
AND 11.05 �C > Cold 6 19.4 �C

Class 5 IF Heat P 44.55 �C
AND Cold > 11.05 �C
AND Current P 2.65 mA

Class 6 IF Heat < 44.5 �C
AND Cold 6 7.95 �C
AND Pressure < 48.8 N/cm2

Class 7 IF Heat P 45.5 �C
AND 2.25 mA 6 Current < 4.75 mA

Class 8 IF Heat P 45.5 �C
AND Cold 6 6.35 �C
AND Current P 4.75 mA

HPS: high-pain sensitivity phenotype, APS: average-pain sensitivity phenotype,
LPS: low-pain sensitivity phenotype. �: Grouping according to the combined ‘‘Pain’’
variable calculated as the average of all z-transformed pain measures to model the
overall sensitivity to any type of pain stimulus [32].
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