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a b s t r a c t

The search for the association between complex disease and single nucleotide polymorphisms (SNPs) or
haplotypes has recently received great attention. Finding a set of tag SNPs for haplotyping in a great num-
ber of samples is an important step to reduce cost for association study. Therefore, it is essential to select
tag SNPs with more efficient algorithms. In this paper, we model problem of selection tag SNPs by MIN-
IMUM TEST SET and use multiple ant colony algorithm (MACA) to search a smaller set of tag SNPs for hap-
lotyping. The various experimental results on various datasets show that the running time of our method
is less than GTagger and MLR. And MACA can find the most representative SNPs for haplotyping, so that
MACA is more stable and the number of tag SNPs is also smaller than other evolutionary methods (like
GTagger and NSGA-II). Our software is available upon request to the corresponding author.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The search for the association between complex diseases and
haplotype is the most interesting topic in the field of medicine or
disease control and prevention. Several studies have proved that
association studies using haplotype information generally outper-
form those using single SNP analyses [1]. Objective of these studies
is to discover the relationship between genetic variations and such
traits, by comparing genetic sequence and phenotypes of individu-
als sampled from a population. Although all single nucleotide poly-
morphisms (SNPs) can be used for indirect association studies to
detect disease-related genetic variants, the complete screening of
a gene or a chromosomal region is nevertheless an expensive
undertaking. A key strategy to improve the efficiency of association
studies is to select a subset of informative SNPs, called tag SNPs, for
analysis [2]. Therefore, it is essential to use a small subset of infor-
mative SNPs accurately identifying haplotypes in a block.

The selection procedure is referred as haplotype tagging, which
is a key process to save the cost for Genome Wide Association
Study. The tag SNPs selection strongly depends on how the chosen
SNPs will be used, and different sets of tag SNPs should be selected
for fulfilling requirements of various genotyping platforms and
projects [3]. For example, Carlson et al. [4] select maximally infor-
mative SNPs for association analysis and Chapman et al. [5] use
haplotype tags to detect disease associations.

Tag SNPs selection is valuable, but it is proved to be a NP-hard
problem [6], and computational science, which includes computa-
tional intelligence (CI), has recently become an important method

for these complicate problems [7]. Many algorithms of tag SNPs
selection have been developed in the past few years. Tag SNPs
selection can follow two different strategies: the block-based and
the block-free strategy. Block-based methods were based on the
haplotype block structure of the human genome. The rationale is
that the human genome can be partitioned into discrete blocks
[8], and most members of a population share a very small subset
of common haplotypes within each block. Since the number of dis-
tinct combinations of alleles (one of two or more alternative forms
of a gene at corresponding loci on homologous chromosomes)
within a block is relatively small [9], thus, selecting a small subset
of SNPs that efficiently represent other SNPs in a given block is an
important problem for reducing genotyping costs without losing
the ability to detect disease associations. There are numerous
block-based methods that include exact (e.g., [1]), approximation
(e.g., [10]), and evolutionary (e.g., [11]) algorithms have been pro-
posed to solve this problem. In a block-free method, tag SNPs are
regarded as a subset of all SNPs, from which the remaining SNPs
can be reconstructed. Block-free methods (e.g., [12,13]) do not
need prior block partition or limit the diversity of haplotypes.

To select smaller tag SNPs and cost less time, a genetic algo-
rithm, called GTagger (Genetic Tagger) [11], for the haplotype tag-
ging SNPs (htSNPs) selection problem is designed. It is intended to
find the smallest htSNPs set in blocks with relatively large number
of SNP sites. However, GTagger cannot find the most representative
SNPs for haplotyping, so that it is not stable and the number of tag
SNPs is not small enough. He and Zelikovsky have introduced two
novel approaches for informative SNP prediction based on multiple
linear regression (MLR) [12] and support vector machines (SVMs).
When the number of tags is increased to 30, MLR needs nearly half
an hour to build a predictor. MLR takes a lot of time to completely
reconstruct the predictor because of selecting a new tag. With
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more tags being selected, the running time increased sharply, so
that MLR is not cost-effective enough.

In this study, we take the block-based approach and ant colony
algorithm is continuously used several times to search for better
solution, which we refer to as a multiple ant colony algorithm
(MACA). The ant colony algorithm inspired by the observation of
real ant colonies was first proposed by Dorigo and his colleagues
[14] as a multi-agent approach to difficult combinatorial optimiza-
tion problems. One of the important parameters in our method is
the heuristic value (g). We design heuristic function with three
heuristic factors (coverage, repeatability, margins). Larger granu-
larity can save running time, and smaller granularity can select a
smaller set of tag SNPs. For trade-off between running time and
the number of tag SNPs, we use three sizes of granularity to build
vertex (a set of SNPs). In our study, MACA is compared with two
other latest evolutionary algorithms (GTagger and NSGA-II [3])
on the number of tags. The results show that MACA is more stable
and the number of tag SNPs is smaller than others, as MACA can
find the most representative SNPs for haplotyping. And, extensive
experiments have shown that the running time of the MACA is also
less than GTagger and MLR.

2. Problem formulation

The tag SNPs problem is regarded as being equivalent to the min-
imum test set problem from the beginning by Zhang et al. To better
explain some concepts involved in our method, we will give a brief
introduction to it in this section. Since we focus on biallelic SNPs,
each haplotype is to be represented by a binary string set. The
length of each haplotype is m and we denote it as hi = {s1,s2, . . .,sm},
si 2 {0,1}. Given a set of haplotypes H = {h1,h2, . . .,hm} belonging to
an arbitrary population, the purpose of this study is to find a smaller
set of tag SNPs T = {t1, t2, . . ., tk} (where k represents the selected
number of tag SNPs) to recognize any proportion (even all) of hap-
lotypes in H.

For the sake of convenience and without losing generality, we
assume that the first haplotype is h1 = {0,0, . . .,0}, and if the SNP
in the same column j in hi (i – 1) is the same as h1, then we let
hij = 0, otherwise hij = 1. For example

H ¼

h1 ¼ ½AT T T�
h2 ¼ ½GC C C�
h3 ¼ ½AT C T�
h4 ¼ ½GC T T�

2
6664

3
7775 is transformed to H ¼

h1 ¼ ½0000�
h2 ¼ ½1111�
h3 ¼ ½0010�
h4 ¼ ½1100�

2
6664

3
7775

In this example, SNP2 and SNP3 are sufficient to identify each of
the four haplotypes.

The set covering problem is a classical question in computer sci-
ence and complexity theory. Given a m � n matrix A = [aij] with
every element being 0 or 1, and aij = 1 represents that the jth col-
umn covers the ith row. Every column in Matrix A has a cost bj. This
problem is to find a subset with minimum total cost to cover every
row. Use J to represent a subset of all columns, and yj is a boolean
variable. If j e J, let yj = 1 otherwise yj = 0. This should be formula-
tion for set cover problem,

min f ðyÞ ¼
Pn
j¼1

bj � yj ð1Þ

constrained by:

Pn
j¼1

aij � yj P 1 ði ¼ 1;2; . . . ;mÞ ð2Þ

yj 2 f0;1g ð3Þ

For the haplotype tagging problem, we take the cost of each SNP
as 1, so the (1) is transformed to (4):

min f ðyÞ ¼
Pn
j¼1

1� yj ð4Þ

Let C(si) represents the set of covered haplotypes, and |C(si)| is
coverage. Set cover model has an important property (5) and we
will make full use of it to construct heuristic function.

CðSi þ SjÞ � CðSiÞ þ CðSjÞ ð5Þ

Namely, when a set of SNPs Sj is added to Si, there are some new
covered haplotypes not existing in C(Si) or C(Sj), and we consider it
as a margin. When a set of SNPs Sj is added to Si, CðSiÞ \ CðSjÞ–;may
happen. Then, we define |C(Si)\C(Sj)| as a repeatability.

3. Methods

In this section, we purpose a method for finding a small subset
of tag SNPs which can accurately identify haplotypes in cases or
controls for Genome Wide Association Study (GWAS). In order to
better describe our method, we divide this section into three sub-
sections. Section 3.1 outlines our approach to solving minimum
test cover, and the corresponding algorithm is in Section 4. After
that, we separately introduce two important components (phero-
mone and heuristic value) of the ant colony algorithm in Sections
3.2 and 3.3.

3.1. Multiple ant colony algorithm (MACA)

In the natural world, ants leave pheromone trails and choose a
path according to the concentration of pheromone, and the phero-
mone density is higher when the path is shorter. Thus, this positive
feedback eventually leads all the ants to follow a shorter path. The
idea of the ant colony algorithm is to simulate real the ant’s behav-
ior. Ant colony algorithm was first proposed by Dorigo and his col-
leagues as a multi-agent approach to difficult combinatorial
optimization problems like the traveling salesman problem (TSP)
and the quadratic assignment problem (QAP) [14]. There is cur-
rently a lot of ongoing activity in the scientific community to ex-
tend or apply ant-based algorithms to solve many different
discrete optimization problems.

In this study, firstly, we aggregate t(2t �m, m is the number of
haplotypes, and t is granularity of a vertex) SNPs to form vertexes,
and t SNPs can be successive or randomly (the experiment shows
that the difference between successive and random is not much).
One SNP cannot be aggregated in different vertexes. Ideally, t SNPs
can cover 2t (2t

6m) haplotypes. After the ant colony algorithm
(ACA) has found the best combination of vertexes with granularity
t, we shrink t to half and use ACA again to optimize the selected
vertexes. Finally, we directly shrink t to 1 and the last optimization
process is executed. Larger granularity accelerates the conver-
gence, and smaller granularity refines the solution. For the trade-
off between running time and the number of tags, we gradually
use t, t/2 and 1 to be the size of granularity, so that we recursively
run the ACA algorithm three times in total, and our method is
named MACA.

3.2. Ant-decision and Pheromone-update

In the ant colony algorithm, a key factor that influences ants
decision-making is pheromone. When a SNP is selected by more
ants, more pheromone is accumulated on this SNP, so that the
probability of it being tag is bigger. When the ant colony algorithm
is applied to the set cover problem, pheromone should be con-
served on vertex (SNPs or single SNP), not on the path.

Since pheromone expressed by si is conserved on the vertex, the
probability with which an ant k chooses the vertex i to be part of
the solution is:
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