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We develop a numerical algorithm for computing the effective drift and diffusivity of the
steady-state behavior of an overdamped particle driven by a periodic potential whose
amplitude is modulated in time by multiplicative noise and forced by additive Gaussian
noise (the mathematical structure of a flashing Brownian motor). The numerical algorithm
is based on a spectral decomposition of the solutions to two equations arising from
homogenization theory: the stationary Fokker–Planck equation with periodic boundary
conditions and a cell problem taking the form of a generalized Poisson equation. We
also show that the numerical method of Wang, Peskin, Elston (WPE, 2003) for computing
said quantities is equivalent to that resulting from homogenization theory. We show
how to adapt the WPE numerical method to this problem by means of discretizing the
multiplicative noise via a finite-volume method into a discrete-state Markov jump process
which preserves many important properties of the original continuous-state process, such
as its invariant distribution and detailed balance. Our numerical experiments show the
effectiveness of both methods, and that the spectral method can have some efficiency
advantages when treating multiplicative random noise, particularly with strong volatility.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We will develop and discuss numerical approaches to computing the long-time effective dynamics of a particle under-
going overdamped dynamics in a periodic potential, randomly modulated as a function of time, and driven additionally by
thermal fluctuations. In order to reduce the number of parameters under consideration, we rescale the spatial variable with
respect to the period L of the potential and the temporal variable with respect to the time which the particle takes to
fall from a maximum near to the minimum of the potential under the zero temperature dynamics. The resulting rescaled
equation of motion for the particle in one dimension can then be written in the form [1]:

dX(t) = −φ′(X(t)
)

F (t)dt + √
2θ dW (t), (1)
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where X(t) denotes the particle position as a function of time, θ = kB T /φ̄ is the ratio of the thermal energy kB T to
the amplitude of potential variations φ̄, φ(x) is the periodic potential structure rescaled to have an order unity scale of
variation, W (t) is a standard Brownian motion with 〈dW (t)〉 = 0 and 〈dW (t)dW (t′)〉 = δ(t − t′)dt dt′ , and F (t) describes
the random temporal modulations of the potential, which may be assumed without loss of generality to have its amplitude
(in mean and/or variance) normalized as desired. For simplicity, we will restrict attention to the situation in which F (t) is
an autonomously prescribed stochastic process, i.e., its dynamics are determined independently of X(t).

Eq. (1) is an example of a Brownian motor [2], a class of stochastic systems which are used to characterize and analyze
the mechanisms behind the functioning of biological molecular motors [3] as well as to design artificial microscale and
nanoscale machines [4,5]. An overdamped dynamical description (without inertia) is appropriate because of the small length
scales and physical values of the other parameters. The periodic environment reflects the ordered assembly of an extended
microtubule, actin fiber, or artificial substrate. Thermal fluctuations play an important but not entirely dominant role so
that θ in practice tends to be somewhat but not much less than 1. Temporal modulations in the potential are induced
by some external means, which typically does work on the particle. In biological settings, the potential in question is
the binding potential between the molecular motor and the microtubule or actin fibers, and is modulated by chemical
processes such as the binding of ATP or release of phosphate, as well as physical processes such as an unbound “head” of
the motor “searching” for and landing on a binding site [6]. These physical and chemical processes proceed with effectively
random delays because they typically rely on some component fluctuating under thermal effects until it manages to achieve
a certain state so that the process goes forward. Consequently, continuous-time Markov chains (or sometimes renewal
processes with more general waiting distributions [7]) are often used to describe the modulations F (t) [8–11], with each
state corresponding to a possible geometric conformation of the motor (except for its center of mass position, encoded by
X(t)). In synthetic motors, the modulation F (t) may often be periodic by design [4,5]. We will here particularly focus on
the special case of a continuous modulation by an Ornstein–Uhlenbeck process. Such continuous stochastic modulations of
the potential could, for example, represent interference of the motion of the molecular motor due to other organelles and
structures in the cellular environment.

Eq. (1) is a simplified “amplitude-modulated flashing ratchet” model which integrates all these physical features in
an essentially minimalist way, and its study has played a key role in the development of the theoretical understanding of
molecular motors [2]. That said, the equations describing actual molecular motors, taking into account more detail regarding
their mechanochemical dynamics and relevant spatial degrees of freedom, are generally more complex than the flashing
ratchet model (1) [12–15]. We nonetheless choose to use the simple model (1) to most clearly explain the foundational
issues regarding a new simulation approach for molecular motors models governed at least in part by continuous-state
stochastic processes. The efforts needed to extend the methodology developed here to more general molecular motor models
will be briefly considered in Section 6.

A central practical question in the theory of Brownian motors is the overall long-time behavior of the particle. The
periodicity of the potential and statistical stationarity, or time-periodicity, of its modulations imply, through a central limit
theorem argument [16], that the statistics of X(t) at long time are Gaussian and characterized completely by the mean drift

U ≡ lim
t→∞

〈X(t)〉
t

(2)

and diffusivity

D ≡ lim
t→∞

〈(X(t) − Ut)2〉
2t

, (3)

where 〈·〉 denotes a statistical average over all randomness. Of particular interest is how these transport parameters, char-
acterizing the large-scale, long-time behavior of the motor, are related to the microscopic design parameters (such as θ , the
structure of the potential φ, and parameters characterizing the fluctuation F (t)) in the detailed stochastic differential equa-
tion model (1). Analytical approaches are generally only possible in asymptotic limits, such as adiabatically slow or rapidly
fluctuating modulations F (t) [2,17]. Some work has pursued such questions through direct Monte Carlo simulations [10,18]
of the stochastic differential equation (1). This approach is, however, rather expensive because the trajectories must be fol-
lowed through many spatial periods and typically also several realizations. Moreover, the nature of the Brownian motor, in
particular the relevant parameter regime θ � 1, is such that the particle takes a substantial amount of time to hop from one
spatial period to another [19,20]. Accurate computations are further hampered by the slow convergence of a Monte Carlo
simulation with respect to computational effort (square root accuracy gains with respect to simulation time and/or number
of realizations).

Deterministic numerical approaches can be alternatively developed based on the equivalence of the stochastic differential
equation (1) for trajectories and the Fokker–Planck partial differential equation

∂tρ(x, f , t) = −∂x
(−φ′(x) f ρ(x, f , t)

) + θ∂xxρ(x, f , t) +L∗
f ρ(x, f , t), (4)

for the probability density ρ(x, f , t) of the particle position x at time t . In Eq. (4), L f is the infinitesimal generator operator
associated to the Markov process F (t), and L∗

f its adjoint. Kostur [19] developed finite element simulations of this equation
with adaptive time stepping to achieve and estimate the long-time behavior for several canonical Brownian motor models,
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