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A computational framework is presented for materials science models that come from
energy gradient flows. The models of interest lead to the evolution of structure involving
two or more phases. The framework includes higher order derivative models and
vector problems. Solutions are considered in periodic cells and standard Fourier spectral
discretization in space is used. Implicit time stepping is used with adaptivity based on local
error estimates. The implicit system at every time step is solved iteratively with Newton’s
method. The resulting linear systems are solved in inner iterations with the conjugate
gradient method, using a novel preconditioner that is a constant coefficient version of the
system, taking values for the coefficients at the pure phase states. Solutions with high
spatial and temporal accuracy are obtained. The dependence of the condition number of
the preconditioned system on the size of the time step and the order parameter in the
model (that represents the scaled width of transition layers between phases) is investigated
numerically and with formal asymptotics in a simple setting. The asymptotic results require
a conjecture on the rank of a modified square distance matrix. Results from a fast, graphical
processing unit implementation for a three-dimensional model are shown. A comparison
to time stepping with operator splitting (into convex and concave parts that guarantees
energy decrease in the numerical scheme) is done.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Many material science problems require an understanding of the microstructure that develops in a mixture of two of
more materials or phases over time as it phase separates during a casting or annealing process. One such equation is the
well-studied Cahn–Hilliard [9] equation, written below in Eq. (2) in a one-dimensional (1D) setting, that describes a binary
alloy during annealing. The problem is described by a scalar function u of space and time that takes values u = +1 in one
phase and u = −1 in the other phase. There is a parameter ε in the model that describes the width of the layers between
the regions. Such regions form in O (1) time in a spinodal evolution. Subsequently, they merge in a ripening process. Ripening
happens on longer time scales, generically O (eC/ε) for 1D Cahn–Hilliard [44] and O (1/ε) in higher dimensions [33]. We
extend the use of the terms “spinodal” and “ripening” to describe similar regimes in the evolution described by other
equations. Phase regions undergoing Cahn–Hilliard evolution increase in size over time in a coarsening process. The statistics
of this coarsening process are of interest [7]. The Cahn–Hilliard model is a sub-class of phase field models. A review of
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the use of such models in material science applications can be found in [11]. It can be shown rigorously that as ε → 0,
solutions of Cahn–Hilliard equations have layers that tend to interfaces that move with a nonlocal geometric motion known
as the Mullins–Sekerka flow [33]. Other phase field models also limit to geometric motion of other kinds. Understanding
the limiting process and studying it directly is of interest. In addition, Cahn–Hilliard equations and variants can be used
in computational approximation of moving interfaces in so-called diffuse interface methods [52,3] in which the problem for
u is coupled to other variables describing other physics. While the computational approach developed in this paper might
be useful to some diffuse interface computations, we are motivated by a general class of pure (uncoupled to other physics)
energy gradient phase field problems described below.

There are several interesting generalizations of the Cahn–Hilliard equation. A lower order version (two instead of four
spatial derivatives), the Allen–Cahn equation (1) [2] is also of interest in materials science, describing the evolution of crystal
grains of the same material during annealing. This equation can also be called a Ginzberg–Landau equation. Vector versions
of this model can describe how these grains can meet at triple junctions [8]. Fourth order phase field models of increasing
complexity are used to describe some aspects of cancerous tumour growth [49,15].

Higher derivative equations are also of interest. A sixth order problem is considered in [48] for a regularization of a
strongly anisotropic Cahn–Hilliard problem. Another sixth order problem is considered in [31] for the phase field crystal
equation. Sixth order models also arise in the study of network formation in functionalized polymers [24]. In these mate-
rials, acid side chains are added to hydrophobic polymers. The ionic interaction of these acid groups with water promotes
the formation of phase interface, a phenomena different from those observed in the Cahn–Hilliard model. Pore network
structures can form in these materials which are of great interest in many applications, including membranes in energy
conversion devices such as fuel cells [34]. These materials can be described by the recently proposed sixth order functional-
ized Cahn–Hilliard equation [37,24,23,16,35]. A simple example is given in Eq. (6) below. Considering [24] in particular, it is
clear that there are a wide range of parameters and energy terms that need to be explored to relate these models to partic-
ular materials. The extension to vector phase fields is of vital interest to models of mixtures with different wettabilities, or
to mixtures undergoing phase change, such as crystallization. The aim of this paper is to develop a numerical approach that
can be applied to the wide range of problems above that can easily be adapted to new terms, higher order problems, and
extension to vector solutions. It should be made clear we do not attempt to outperform well-developed codes with space
and time adaptivity with fast, multi-grid solvers that have been developed for particular problems such as [48,36]. Rather,
we develop a reasonably fast time-adaptive technique with general applicability.

Since many questions of interest in materials science are about the microstructure of a bulk material far from boundaries,
it is reasonable to consider problems in periodic domains. We use a Fourier spectral discretization which is a natural
choice in this setting. Although this does rule out spatial adaptivity, it does admit a fast implementation on Graphical
Processing Units (GPU) in the computational framework we develop. We discretize in time using Backward Differentiation
Formula (BDF) methods [30] of low order, which have good stability properties. Temporal error estimation is done with
Adams–Bashforth (AB) [29] predictors. Newton’s method is used to solve the resulting nonlinear problems. The Jacobian
matrix in the solve for the Newton update is symmetric since it is the second variational derivative of an energy functional.
It is also positive definite for time steps small enough (this is discussed in more detail below). Although the Jacobian
is dense for spectral discretizations, multiplication by the matrix can be done quickly using the Fast Fourier Transform
(FFT). This motivates our use of the conjugate gradient method [45] to solve the Newton updates. Such an approach used
on high order problems requires an efficient preconditioner. We use a constant coefficient version of the problem that is
a linearization at pure phase states, which will dominate the solution during ripening. This idea is similar to that used
in [14] in fixed point iterations for time stepping for Cahn–Hilliard with operator splitting. Efficient performance is seen
with our approach for a wide selection of scalar and vector problems from second to sixth order. Mild increase is seen in
preconditioned conjugate gradient (PCG) iteration counts per time step as the time step is increased and ε is decreased.
Exploration of the performance of the method specifically for the 1D Cahn–Hilliard problem, which has a well understood
structure during ripening, shows that the number of PCG iterations per solve scales as O (

√
k/ε ) for large time steps k and

small ε , independent of the spatial discretization.
There have been many other contributions to the numerical solution of the Cahn–Hilliard and related equations. The

authors are not aware of a comprehensive review of this topic, but representative examples can be found in [19,22,27,28,
39,46,50,51,48,25,14]. Our work is novel in four ways: we exploit the symmetry of the Jacobian matrix for the fully implicit
time stepping problem in a CG method; we propose and analyze the preconditioner for this Jacobian solve and show that
it is effective for a number of problems; we implement the method in modern GPU architecture and get fast performance;
we demonstrate that the Jacobian matrix is not singular for large time steps during ripening and that fully implicit time
stepping leads to accurate solutions with these large time steps with energy decrease.

We discuss further the issue of time stepping. For arbitrary discrete initial data, the fully implicit time discretization
problem is known to have a unique solution only when the time step is small enough [17]. As the spatial grid size h = �x
is reduced and the initial data on the refined grid is again allowed to be arbitrary, the time step that guarantees unique
solutions to the implicit time discretization problem is reduced. In addition, it is not possible in general to show that a fully
implicit time step leads to a decrease in the underlying energy. Guarantees of solvability for any time step k and energy
decrease are possible for some models with an operator splitting approach due to Eyre [21]. Although never published, this
work has been very influential and some of the results are summarized in [42]. Several of the computational approaches
cited above use variants of this splitting approach. Some of the splitting techniques lead to nonlinear problems and we show
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