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Alloy dendrite growth during solidification with coupled thermal-solute-convection fields
has been studied by phase field modeling and simulation. The coupled transport equations
were solved using a novel parallel-multigrid numerical approach with high computational
efficiency that has enabled the investigation of dendrite growth with realistic alloy values
of Lewis number ∼104 and Prandtl number ∼10−2. The detailed dendrite tip shape and
character were compared with widely recognized analytical approaches to show validity,
and shown to be highly dependent on undercooling, solute concentration and Lewis
number. In a relatively low flow velocity regime, variations in the ratio of growth selection
parameter with and without convection agreed well with theory.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the shaped casting industry the growth behavior of dendrites in a solidifying alloy controls the as-cast microstructure
and has a strong influence on final component mechanical properties. Cast structures in practice, even in simple binary al-
loys, are complex and rarely conform to easy classification as homogeneously columnar or equiaxed, and frequently present
complex cellular/dendritic patterns that vary from place to place. There has been significant effort to better understand the
underlying physics controlling the shape, length scale and solute redistribution processes occurring at a growing dendrite
tip in an attempt to control the factors that determine final cast microstructure [1–5]. Both analytical and numerical ap-
proaches have been developed, but despite the well-known strong influence of liquid movement and convection on final
microstructure in practice, only a small number of recent studies have begun to account for its influence on the prior, more
developed thermal-solute approaches.

The operating state of a growing dendrite can be defined by the tip radius Rtip and the tip velocity vtip . By assuming
the tip to be a parabola (in 2-D) or a paraboloid of revolution (in 3-D) with parabolic tip radius R p and the steady dendrite
is isothermal with the solid at the melting temperature, Ivantsov [6] proposed the most widely quoted relationship for
dendrite operating state for a purely thermally-controlled growing dendrite, comprising the relationship between external
imposed undercooling � = (Tm − T∞)/(L/C p) and the thermal Peclet number at the tip PeT = R p vtip/(2α) as � = Iv(PeT ),
where Tm is the melting temperature, T∞ is the temperature of the undercooled melt, L is the latent of fusion, C p is the
specific heat, α is the thermal diffusivity and Iv(x) = √

πx exp(x)erfc(
√

x ) is the Ivantsov function (in 2-D). Ivantsov’s theory
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predicted that for a given undercooling, there were infinite pairs of (Rtip , vtip) for the solution of the linked expression since
only their product (Peclet number) could be determined. While convenient, this implication is in conflict with experiment
where Rtip and vtip are invariant for a fixed undercooling. Two subsequent approaches were then developed by the intro-
duction of a selection constant defined as σ ∗ . The marginal stability theory was developed by Langer and Muller-Krumbhaar
[7] and involved another relationship between the tip radius and velocity given as R2

p vtip/(d0α) = (1/σ ∗)2 where d0 is the
material thermal capillary length. Drawing on a stability analysis [8] based on the allowable shape of a perturbed, non-flat
solid–liquid interface, they proposed σ ∗ = 1/(2π). Ben-Jacob et al. [9,10] and Kessler et al. [11,12] developed other ap-
proaches that allowed for anisotropic surface energy to give a single, paired solution for R p and vtip , deduced from the
fastest growing mode of perturbed solid–liquid interface, which led to an expression similar to the one given by Langer
and Muller-Krumbhaar [7] i.e. R2

p vtip = constant. Kessler and Levine [13] extended this idea and found that the dendrite
tip shape computed in this way generally displays a cusp (non-zero slope) at the tip and at a unique (R p , vtip) pair; the
cusp reduces to a smooth shape with zero slope at the tip, which is called the microscopic solvability condition. Further nu-
merical experiments revealed that the selection constant σ ∗ was dependent on the strength of the surface anisotropy ε i.e.
R2

p vtip = f (ε). Nevertheless, experimental validation of these increasingly complicated analytical/numerical approaches has
been difficult since they rely on controlling stable and well-characterized growth conditions, generally far from the more
dynamic conditions expected in practice [14].

The extension of the microscopic solvability theory to binary alloys, where both solute and thermal diffusion are important,
was performed by Lipton, Glicksman and Kurz (LGK) [15] and Lipton, Kurz and Trivedi (LKT) [16]. These approaches are also
characterized by the use of a selection constant σ ∗ (σ ∗

LGK and σ ∗
LKT will be used for the LGK and LTK theories respectively):

σ ∗ = d0

R pPeT [ξT + 2ξc Le( Mc∞
1−(1−k)�C

)] (1)

where M = |m|(1 − k)/(L/C p) is the scaled dimensionless liquidus slope, m is the actual liquidus slope from the phase
diagram, k is the solute partition coefficient, Le = α/D is the Lewis number, D is the solute diffusivity in liquid, c is the
solute concentration and c∞ is the equilibrium solute concentration. �C = (ctip − c∞)/((1 − k)ctip) is the dimensionless
solutal undercooling and ctip is the solute concentration at dendrite tip. For the LGK theory, both ξT and ξc are unity but
for the LKT theory:

ξc = 1 + 2k

1 − 2k −
√

1 + 1
σ ∗(Pec)2

(2)

and

ξT = 1 − 1√
1 + 1

σ ∗(PeT )2

(3)

The overall undercooling is then given by:

�T = L

C p
�T + k�T0�c

1 − (1 − k)�c
+ Γ

R p
(4)

where the three terms on the right correspond to thermal, solutal and capillary undercooling, respectively. �T0 =
|m|c∞(1 − k)/k is the equilibrium freezing range corresponding to c∞ and Γ is the Gibbs–Thomson coefficient. �T =
(Ttip − T∞)/(L/C p) is the dimensionless thermal undercooling. Eqs. (1) and (4) together uniquely determine the tip radius
and tip velocity.

Convection in the melt – almost always significant in practice – has long been realized to have a profound effect on
dendritic growth [17]. But it is presently unclear how the preceding theories (LGK and LKT) for binary alloys may remain
valid or how they might be modified when convection is present. Ananth and Gill [18] and Saville and Beaghton [19] studied
the motion of the freezing front between a needle-shaped crystal and a supercooled liquid for situations where there is
forced convection aligned along the crystal growth. Analysis was conducted by modeling the transport problem for a pure
material solidifying as a paraboloid of revolution in an infinite undercooled melt. The imposed external undercooling could
be characterized by the thermal Peclet number PeT , the flow Peclet number Pe f = Rtip v∞/2α (where v∞ is the imposed
external flow velocity) and the Prandtl number Pr = υ/α (ratio between kinematic viscosity and thermal diffusivity) i.e.
� = �(PeT ,Pe f ,Pr). Through a so-called linear solvability analysis, Bouissou and Pelce [20] considered the stability of this
solution, and found that the ratio of the selection parameters with convection (σ ∗) and without convection (σ ∗

0 ) could be
characterized by a dimensionless parameter χe:

σ ∗
0

σ ∗ = 1 + bχ11/14
e (5)

where b is a numerical constant,
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