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Recent advances in high performance computing systems and sensing technologies
motivate computational simulations with extremely high resolution models with capa-
bilities to quantify uncertainties for credible numerical predictions. A two-level domain
decomposition method is reported in this investigation to devise a linear solver for the
large-scale system in the Galerkin spectral stochastic finite element method (SSFEM). In
particular, a two-level scalable preconditioner is introduced in order to iteratively solve the
large-scale linear system in the intrusive SSFEM using an iterative substructuring based
domain decomposition solver. The implementation of the algorithm involves solving a
local problem on each subdomain that constructs the local part of the preconditioner
and a coarse problem that propagates information globally among the subdomains. The
numerical and parallel scalabilities of the two-level preconditioner are contrasted with the
previously developed one-level preconditioner for two-dimensional flow through porous
media and elasticity problems with spatially varying non-Gaussian material properties.
A distributed implementation of the parallel algorithm is carried out using MPI and PETSc
parallel libraries. The scalabilities of the algorithm are investigated in a Linux cluster.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the numerical modeling of many practical engineering and natural systems, the random heterogeneities and imper-
fections of the propagating media may significantly influence the predictive capabilities of computer simulations. Recent
advances of high performance computing and sensing technologies motivate computational simulations with extremely
high resolution which should integrate efficient uncertainty quantification methods for realistic and credible numerical pre-
dictions. For such extreme scale simulations, uncertainty quantification using the standard Monte Carlo simulation may be
time-consuming or impractical. To reduce the computational cost of the traditional Monte Carlo simulation, a multi-level
Monte Carlo method has recently been proposed [2,3]. Alternatives to Monte Carlo sampling techniques are the spec-
tral stochastic finite element method (SSFEM) whose implementations can exploit non-intrusive collocation method (e.g.
[4–11]) or intrusive Galerkin approach (e.g. [12–21]). This investigation focuses on an efficient distributed implementation
of Galerkin scheme in SSFEM for large-scale systems, circumventing the need of any random or deterministic sampling. For
a comprehensive review of SSFEM, we refer to e.g. [12,14,22–26].

✩ The preliminary version of the paper is published in the proceeding of HPCS 2011 conference [1].
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In the so-called intrusive SSFEM (e.g. [12]), a Galerkin projection scheme transforms the original stochastic linear system
into a coupled set of block linear systems. Depending on the scales of random fluctuations present on the system parameters
and degree of nonlinearities between the input and output processes, the order of the resulting deterministic linear system
can increase significantly in the SSFEM. The computational efficiency of the SSFEM solver is primarily dictated by the
solution strategies adopted to tackle the coupled deterministic linear systems. This fact inspires the development of a
scalable solver for the SSFEM which can efficiently exploit the modern high performance computing systems.

Preconditioned iterative solvers [27–32] and multigrid methods [33–35,26] have been exploited to develop robust and
reliable iterative solvers for the Galerkin projection-based intrusive SSFEM. The block-Jacobi preconditioner based on the
mean stiffness matrix is generally employed to accelerate the convergence rate of the iterative methods. However, such
iterative solvers equipped with the block-Jacobi preconditioner show performance degradation as the level of uncertainty
and order of the deterministic linear system grow in the SSFEM [27,28,30,32,36]. This fact prompts further research to
enhance the robustness and performance of iterative techniques in order to solve the large-scale system in the intrusive
SSFEM.

To this end, a non-overlapping domain decomposition algorithm is reported in [37] using the intrusive SSFEM. The
algorithm relies on a Schur complement-based domain decomposition in the physical space and a polynomial expansion of
stochastic processes representing the system parameters and solution field. Extending the basic mathematical formulation
in [37], a one-level iterative substructuring technique is presented in [38,39] for efficient solution of the large-scale linear
system in the intrusive SSFEM. Numerical experiments demonstrate that the convergence rate of the iterative algorithm is
mainly insensitive to the magnitude of the coefficient of variation (i.e. strength of randomness) of the system parameters
and order of stochastic dimension. However, the one-level iterative algorithm in [38,39] shows that the iteration count
grows linearly as we increase the number of subdomain partitions.

A two-level domain decomposition preconditioner is described in this paper to improve the efficiency of the iterative
substructuring technique in the intrusive SSFEM [38,39]. A dual–primal domain decomposition method for SSFEM is re-
ported elsewhere by the authors [40–43]. In particular, the one-level Neumann–Neumann (NN) preconditioner in [38,39]
is complemented by a coarse grid in this paper. A collection of corner nodes at the subdomain interfaces constitute the
coarse grid. Consequently, a coarse problem is solved at each iteration to spread information across all the subdomains. This
information exchange achieved by the coarse grid makes the preconditioner scalable. The two-level preconditioner may be
construed to be a probabilistic extension of the Balancing Domain Decomposition by Constraints (BDDC) [44,45] devised
for deterministic PDEs. The parallel performances of the previously developed one-level preconditioner [38,39] and the
new two-level preconditioner are contrasted using illustrations from linear elasticity and flow through porous media with
spatially varying non-Gaussian material properties. We use PETSc [46] and MPI [47] parallel libraries for the distributed
implementation of the algorithm.

2. Schur complement system of the stochastic PDEs

We briefly describe Schur complement-based domain decomposition solver for stochastic PDEs [1,37–39,48,40,41]. For
an elementary exposition of the methodology, we consider an elliptic stochastic PDE on a domain Ω with a prescribed
homogeneous Dirichlet boundary condition on ∂Ω as

∇ · (κ(x, θ)∇u(x, θ)
) = f (x), x ∈ Ω, (1)

u(x, θ) = 0, x ∈ ∂Ω, (2)

where θ denotes an element in the sample space, u(x, θ) is the solution process, κ(x, θ) represents the diffusion coefficient
modeled as a strictly positive random field and f (x) is the deterministic forcing term. The finite element discretization of
the above elliptic stochastic PDE yields the following stochastic linear system

A(θ)u(θ) = f, (3)

where A(θ) is the stochastic stiffness matrix, u(θ) is the random response vector and f is the external forcing vector. For
high resolution models, domain decomposition techniques can be exploited to tackle Eq. (3) on parallel computers [1,37–39,
48,40,41].

The computational domain Ω is partitioned into ns non-overlapping subdomains Ω = ⋃ns
s=1 Ωs with interfaces defined

as Γ = ⋃ns
s=1 Γs where Γs = ∂Ωs\∂Ω [49–52]. The nodes of each subdomain (Ωs , s = 1, . . . ,ns) are partitioned into two

subsets: interior nodes that belong to the given subdomain and interface nodes shared by two or more adjacent subdomains
as shown in Fig. 1.

According to this partition, the equilibrium system of a typical subdomain Ωs is expressed as[
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where us
I (θ) denotes the unknowns associated with the interior nodes of the subdomain Ωs and us

Γ (θ) corresponds to the
interface unknowns associated with the interface boundary Γs .
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