
Journal of Computational Physics 257 (2014) 901–911

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A parallel Jacobian-free Newton–Krylov solver for a coupled
sea ice-ocean model

Martin Losch a,∗, Annika Fuchs a, Jean-François Lemieux b, Anna Vanselow c

a Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Postfach 120161, 27515 Bremerhaven, Germany
b Recherche en Prévision Numérique environnementale/Environnement Canada, 2121 route Transcanadienne, Dorval, QC, H9P 1J3, Canada
c Universität Oldenburg, Ammerländer Heerstr. 114–118, 26129 Oldenburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 May 2013
Received in revised form 4 September 2013
Accepted 16 September 2013
Available online 25 September 2013

Keywords:
Sea ice dynamics
Numerical sea ice modeling
Jacobian-free Newton–Krylov solver
Preconditioning
Parallel implementation
Vector implementation

The most common representation of sea ice dynamics in climate models assumes that sea
ice is a quasi-continuous non-normal fluid with a viscous-plastic rheology. This rheology
leads to non-linear sea ice momentum equations that are notoriously difficult to solve.
Recently a Jacobian-free Newton–Krylov (JFNK) solver was shown to solve the equations
accurately at moderate costs. This solver is extended for massive parallel architectures and
vector computers and implemented in a coupled sea ice–ocean general circulation model
for climate studies. Numerical performance is discussed along with numerical difficulties in
realistic applications with up to 1920 CPUs. The parallel JFNK-solver’s scalability competes
with traditional solvers although the collective communication overhead starts to show a
little earlier. When accuracy of the solution is required (i.e. reduction of the residual norm
of the momentum equations of more that one or two orders of magnitude) the JFNK-solver
is unrivalled in efficiency. The new implementation opens up the opportunity to explore
physical mechanisms in the context of large scale sea ice models and climate models and
to clearly differentiate these physical effects from numerical artifacts.

© 2013 Crown Copyright and Elsevier Inc. Published by Elsevier Inc. All rights reserved.

1. Introduction

The polar oceans are geographically small compared to the world ocean, but still they are a very influential part of
Earth’s climate. Sea ice is an important component of the polar oceans. It acts as an insulator of heat and surface stress
and without it atmospheric temperatures and hence flow patterns would be entirely different than today. Consequently,
predicting future climate states or hindcasting previous ones requires accurate sea ice models [1,2]. The motion of sea ice
from formation sites to melting sites determines many aspects of the sea ice distribution and virtually all state-of-the-art
sea ice models explicitly include a dynamics module.

Unfortunately, climate sea ice models necessarily contain many approximations that preclude the accurate description
of sea ice dynamics. First of all, sea ice is usually treated as a quasi-continuous non-Newtonian fluid with a viscous-plastic
rheology [3]. The assumption of quasi-continuity may be appropriate at low resolution but at high resolution (i.e. with
a grid spacing on the order of kilometers) the scale of individual floes is reached and entirely new approaches may be
necessary [4–6]. If continuity is acceptable (as in climate models with grid resolutions of tens of kilometers), the details
of the rheology require attention [7,8,6]. Lemieux and Tremblay [9] and Lemieux et al. [10] demonstrated that the implicit
numerical solvers that are used in climate sea ice models do not yield accurate solutions. These Picard solvers suffer from
poor convergence rates so that iterating them to convergence is prohibitive [10]. Instead, a typical iterative process is
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terminated after a few (order two to ten) non-linear (or outer loop, OL) steps assuming falsely that the solution is sufficiently
accurate [11,9]. Without sufficient solution accuracy, the physical effects, that is, details of the rheology and improvements
by new rheologies cannot be separated from numerical errors [12,13]. Explicit methods may not converge at all [10].

Lemieux et al. [14] implemented a non-linear Jacobian-free Newton–Krylov (JFNK) solver in a serial sea model and
demonstrated that this solver can give very accurate solutions compared to traditional solvers with comparatively low
cost [10]. Here, we introduce and present the first JFNK-based sea ice model coupled to a general circulation model for
parallel and vector computers. For this purpose, the JFNK solver was parallelized and vectorized. The parallelization required
introducing a restricted additive Schwarz method (RASM) [15] into the iterative preconditioning technique (line successive
relaxation, LSR) and the parallelization of the linear solver; the vector code also required revisiting the convergence of the
iterative preconditioning method (LSR). The JFNK solver is matrix free, that is, only the product of the Jacobian times a
vector is required. The accuracy of this operation is studied. Exact solutions with a tangent-linear model are compared to
more efficient finite-difference approaches.

Previous parallel JFNK solutions addressed compressible flow [16] or radiative transfer problems [17]. The sea ice mo-
mentum equations stand apart because the poor condition number of the coefficient matrix makes the system of equations
very difficult to solve [9]. The coefficients vary over many orders of magnitude because they depend exponentially on the
partial ice cover within a grid cell (maybe comparable to Richards’ equations for fluid flow in partially saturated porous
media [18]) and are a complicated function (inverse of a square root of a quadratic expression) of the horizontal derivatives
of the solution, that is, the ice drift velocities. These coefficients are very different in convergent motion where sea ice can
resist large compressive stress and in divergent motion where sea ice has very little tensile strength. As a consequence,
a successful JFNK solver for sea ice momentum equations requires great care, and many details affect the convergence.
For example, in contrast to Godoy and Liu [17], we never observed convergence in realistic simulations without sufficient
preconditioning.

The paper is organized as follows. In Section 2 we review the sea ice momentum equations and the JFNK-solver; we de-
scribe the issues that needed addressing and the experiments that are used to illustrate the performance of the JFNK-solver.
Section 3 discusses the results of the experiments and conclusions are drawn in Section 4.

2. Model and methods

For all computations we use the Massachusetts Institute of Technology general circulation model (MITgcm) code [19,20].
This code is a general purpose, finite-volume algorithm on regular orthogonal curvilinear grids that solves the Boussinesq
and hydrostatic form of the Navier–Stokes equations for an incompressible fluid with parameterizations appropriate for
oceanic or atmospheric flow. (Relaxing the Boussinesq and hydrostatic approximations is possible, but not relevant here.)
For online documentation of the general algorithm and access to the code, see http://mitgcm.org. The MITgcm contains a
sea ice module whose dynamic part is based on Hibler’s [3] original work; the code has been rewritten for an Arakawa
C-grid and extended to include different solution techniques and rheologies on curvilinear grids [12]. The sea ice module
serves as the basis for implementation of the JFNK solver.

2.1. Model equations and solution techniques

The sea ice module of the MITgcm is described in Losch et al. [12]. Here we reproduce a few relevant aspects. The
momentum equations are

m
Du

Dt
= −mf k × u + τ air + τ ocean − m∇φ(0) + F, (1)

where m is the combined mass of ice and snow per unit area; u = ui + vj is the ice velocity vector; i, j, and k are unit
vectors in the x-, y-, and z-directions; f is the Coriolis parameter; τ air and τ ocean are the atmosphere–ice and ice–ocean
stresses; ∇φ(0) is the gradient of the sea surface height times gravity; and F = ∇ · σ is the divergence of the internal
ice stress tensor σi j . Advection of sea-ice momentum is neglected. The ice velocities are used to advect ice compactness
(concentration) c and ice volume, expressed as cell averaged thickness hc; h is the ice thickness. The numerical advec-
tion scheme is a so-called 3rd-order direct-space–time method [21] with a flux limiter [22] to avoid unphysical over and
undershoots. The remainder of the section focuses on solving (1).

For an isotropic system the stress tensor σi j (i, j = 1,2) can be related to the ice strain rate tensor

ε̇i j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
and the ice pressure

P = P∗ ch e−C ·(1−c)

by a nonlinear viscous-plastic (VP) constitutive law [3,11]:

σi j = 2ηε̇i j + [ζ − η]ε̇kkδi j − P

2
δi j . (2)
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