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a b s t r a c t

We present a novel framework for integrative biomarker discovery from related but separate data sets
created in biomarker profiling studies. The framework takes prior knowledge in the form of interpretable,
modular rules, and uses them during the learning of rules on a new data set. The framework consists of
two methods of transfer of knowledge from source to target data: transfer of whole rules and transfer of
rule structures. We evaluated the methods on three pairs of data sets: one genomic and two proteomic.
We used standard measures of classification performance and three novel measures of amount of trans-
fer. Preliminary evaluation shows that whole-rule transfer improves classification performance over
using the target data alone, especially when there is more source data than target data. It also improves
performance over using the union of the data sets.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Molecular profiling data is used extensively to learn classifiers,
such as rule models, and discover biomarkers for early detection,
diagnosis and prognosis of diseases. Biomarkers are also critical
for furthering understanding of disease mechanisms and creating
treatments. The aim in biomarker discovery is to find a small set
of measured variables that can be used to accurately predict a
disease state. This is particularly challenging because typically
we must choose among tens or hundreds of thousands of variables,
representing molecules in complex mixtures, often with high
measurement error. Also, data sets are typically very small, usually
tens or hundreds of patients in a study. All these factors make
statistical analyses more error-prone.

Fortunately, there are often multiple similar studies, each
producing a data set. In order to draw on all the available data,
researchers typically analyze each data set separately, then com-
pare the biomarkers discovered [1,2]. However, this is sub-optimal
because the analysis is still done on the separate small data sets. A
simple way to combine the data is to use the union of the data sets.
But such attempts are typically confounded by variability in
sample processing and by systematic measurement error specific
to each data set. For example, the same numerical measurement
might mean a high abundance of some protein in one data set
but low abundance in another data set.

We propose a novel framework for transfer learning, called
Transfer Rule Learner (TRL), that is particularly well-suited to
biomarker discovery. Transfer learning is the use of data from
one learning task to help in learning another task [3]. Pan and Yang
[4] offer a survey of transfer learning. Various methods for transfer
learning have been applied to various domains, such as part-
of-speech tagging [5] and leaf classification [6]. Transfer learning
for biomarker discovery is promising because previous studies
have found reproducibility of information collected in different
experimental sessions when using the same protocols [1,2]. Unfor-
tunately, many transfer learning frameworks typically produce
classifiers that are difficult for human users to understand or that
use many variables [3,5], which makes them less useful for
biomarker discovery. Unlike other transfer learning methods, TRL
transfers knowledge in the form of modular, interpretable classifi-
cation rules, and uses them to seed learning of a new classifier on a
new data set. Rule learning has the advantage that variable selec-
tion is embedded in the learning algorithm, and the new model
uses only a few of the many measured variables to explain the
data.

TRL is an extension of the classification rule learning algorithm
RL [7], which been used successfully to solve biomedical problems
for more than three decades [8–11] and in the past decade has
been adapted and used for biomarker profiling [12–17].

We demonstrate our method on five clinical data sets, and find
that more often than not, transfer learning improves performance
over using one data set alone, and even more often over learning
on the union of the data sets. We evaluate the methods using stan-
dard performance measures and three novel measures of transfer.
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To our knowledge, this is the first effort to apply transfer of rules or
rule structure between related biomedical data sets.

2. Materials and methods

Our transfer learning framework is based on the classification
rule learner RL [7]. Models learned by RL are simple to understand
and can represent non-linear relationships. RL covers data with
replacement (see Section 2.1), which is beneficial when training
data are scarce.

Fig. 1 shows an overview of our transfer learning approach. A
source data set is used to train a set of prior rules that are then
used as seeds for learning on the target data. Section 2.1 provides
a brief overview of RL, which is useful in understanding transfer
learning with TRL described in Sections 2.2, 2.3, 2.4.

2.1. Rule learning with RL

RL is a classification learning algorithm that outputs a rule-
based classifier. RL’s input is a set of training data instances, where
each instance is a vector of values for the input variables, and a
class value. The learned classifier comprises a set of rules of the
form:

IF < antecedent > THEN < consequent >

where the antecedent consists of a conjunction of one or more
variable-value pairs (conjuncts), and the consequent is a predic-
tion of the class variable. For example, a rule learned from proteo-
mic mass spectra might be:

IFððmz2:05¼HighÞ AND ðmz9:65¼LowÞÞ THEN Class¼Control

which is interpreted as ‘‘if the variable for m/z 2.05 kilo Daltons
(kDa) has a value in the High range and the m/z 9.65 has a value
in the Low range, then predict the class value Control.’’ Values such
as Low and High represent intervals of real numbers that result
from discretizing the variables before training with RL. (See Section
2.2.) A rule is said to cover or match a data instance if each variable
value of the instance is in the range specified in the rule antecedent.
RL covers data with replacement, which means that multiple rules
are allowed to cover the same training instance. This is unlike most
other classification rule and tree learning algorithms, such as C4.5
[18] and CART [19], which cover data without replacement, so that
each data instance is covered by only one rule. In small sample size
data sets, covering with replacement allows RL to utilize more of
the available evidence for each rule when computing the generaliz-
ability of the rule.

The classifier also includes an evidence gathering method for
breaking ties when the antecedents of several rules are met but
their consequents are different. We use the default evidence gath-
ering method: voting weighted by the rules’ certainty factor values.

RL is shown in Algorithm 1. The input is a set of data instance
vectors and a set of values for the learning parameters specified
by the user. The parameters define constraints on the acceptable
rules in terms of a number of quantities defined with respect to
a rule and a data set. The constraints are minimum coverage, min-
imum certainty factor value, maximum false positive rate, and
inductive strengthening. Coverage is the fraction of training exam-
ples for which the rule antecedent is satisfied. An additional
parameter is the certainty factor function. The Certainty factor
function (CF) is a measure of the rule’s accuracy; several alterna-
tive certainty factor functions are defined and implemented in
RL, and the specific function to use can be specified as a parameter
to the algorithm. As a CF function, we used the true positive rate:
the number of examples the rule predicts correctly divided by
the number of examples it matches. False positive rate is the num-
ber of examples the rule predicts incorrectly divided by the num-
ber of examples it matches. Inductive strengthening is a bias
toward training new rules that cover uncovered training instances.
Specifically, the parameter specifies the minimum number of pre-
viously uncovered examples that a proposed rule must cover. The
smaller this number, the larger the overlap of instances covered by
different rules. Because RL covers data with replacement, using
some non-zero inductive strengthening helps to learn a more gen-
eralizable model. Maximum conjuncts is the maximum number of
variable-value pairs allowed in the antecedent of any rule.

The algorithm proceeds as a heuristic beam search through the
space of rules from general to specific [20]. Starting with all rules
containing no variable-value pairs, it iteratively specializes the
rules by adding conjuncts to the antecedent. It evaluates the rules
and inserts promising rules onto the beam, sorted by decreasing
certainty factor value. Beam search is used to limit the running
time and space of the algorithm.

2.2. Transfer of rules

Algorithm 1. TRL. Differences from RL are underlined. Function
import() takes a list of prior rules and removes from them any
variables that do not appear in the data set. satisfies() checks
if the rule satisfies the user-specified constraints. The second call to
satisfies() checks only the minimum-coverage constraint
because coverage of any specialized rule will be equal or smaller.
specialize() creates all non-redundant specialized rules by
adding to the original rule antecedent single variable-value pairs
from the data set.

Input : data, a set of training instance vectors

Input : priorRules, a list of prior rules
Parameters: constraints, constraints on acceptable rules
Parameters: minCoverage, minimum-coverage constraint

beam import(priorRules)+[; ) class1, ; ) class2. . .];
beam sort(beam);
model [];
while beam is not empty do

beamnew [];
foreach rule 2 beam do

if satisfies(rule, constraints, data) then
model model+[rule];
beamnew beamnew + specialize(rule);

else if satisfies(rule, minCoverage, data) then
beamnew beamnew + specialize(rule);

end
beam sort(beamnew);

end
end
Return model

Fig. 1. The TRL framework.
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