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a b s t r a c t

We give a systematic method for discretizing Hamiltonian partial differential equations
(PDEs) with constant symplectic structure, while preserving their energy exactly. The same
method, applied to PDEs with constant dissipative structure, also preserves the correct
monotonic decrease of energy. The method is illustrated by many examples. In the Hamil-
tonian case these include: the sine–Gordon, Korteweg–de Vries, nonlinear Schrödinger,
(linear) time-dependent Schrödinger, and Maxwell equations. In the dissipative case the
examples are: the Allen–Cahn, Cahn–Hilliard, Ginzburg–Landau, and heat equations.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

‘‘The opening line of Anna Karenina, ‘All happy families resemble one another, but each unhappy family is unhappy in its
own way’, is a useful metaphor for the relationship between computational ordinary differential equations (ODEs) and com-
putational partial differential equations (PDEs). ODEs are a happy family – perhaps they do not resemble each other, but, at
the very least, we can treat them by a relatively small compendium of computational techniques. . .PDEs are a huge and mot-
ley collection of problems, each unhappy in its own way’’ (Quote from Iserles’ book [15]).

Whereas there is much truth in the above quote, in this paper we set out to convince the reader that, as far as conserva-
tion or dissipation of energy is concerned, many PDEs form part of one big happy family (cf. also [17]) that, after a very
straightforward and uniform semi-discretization, may actually be solved by a single unique geometric integration method
– the so-called average vector field method – while preserving the correct conservation, respectively, dissipation of energy.
The concept of ‘energy’ has far-reaching importance throughout the physical sciences [10]. Therefore a single procedure, as
presented here, that correctly conserves, resp. dissipates, energy for linear as well as nonlinear, low-order as well as high-
order, PDEs would seem to be worthwhile.

Energy-preserving schemes have a long history, going back to Courant, Friedrichs, and Lewy’s cunning derivation [6] of a
discrete energy conservation law for the five-point finite difference approximation of the wave equation which they used to
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prove the scheme’s convergence. The conservation law structure of many PDEs is considered fundamental to their
derivation, their behaviour, and their discretization. Li and Vu-Quoc [18] give a historical survey of energy-preserving
methods for PDEs and their applications, especially to nonlinear stability. What is relevant to us here is that many of these
methods (e.g. [4,8,9,11,19–21,30,35]) have an ad hoc character and are not completely systematic either in their derivation
or in their applicability; in contrast, the method discussed here (Eq. (16) below) is completely systematic, applies to a huge
class of conservation and dissipative PDEs, and depends functionally only on the PDE itself, not its energy. In some cases it
reduces to previously studied methods, for example, it reproduces one of Li and Vu-Quoc’s schemes [18] for the nonlinear
wave equation. Even in these cases, however, it sheds considerable light on the actual structure of the scheme and the
origin of its conservative properties. See also the discussion comparing different constructions of energy-preserving
integrators in [7].

We consider evolutionary PDEs with independent variables ðx; tÞ 2 Rd � R, functions u belonging to a Hilbert space B with
values1 uðx; tÞ 2 Rm, and PDEs of the form

_u ¼ D dH
du

; ð1Þ

where D is a constant linear differential operator, the dot denotes @
@t, and

H½u� ¼
Z

X
Hðx; uðnÞÞdx; ð2Þ

where X is a subset of Rd � R, and dx ¼ dx1dx2 . . . dxd. dH
du is the variational derivative of H in the sense that

d
d�
H½uþ �v �j�¼0 ¼

dH
du

; v
� �

ð3Þ

for all u;v 2 B (cf. [28]), where h; i > is the inner product in B. For example, if d ¼ m ¼ 1; B ¼ L2ðXÞ, and

H½u� ¼
Z

X
Hðx; u;ux;uxx; . . .Þdx; ð4Þ

then

dH
du
¼ @H
@u
� @x

@H
@ux

� �
þ @2

x
@H
@uxx

� �
� � � � ; ð5Þ

when the boundary terms are zero.
Similarly, for general d and m, we obtain

dH
dul
¼ @H
@ul
�
Xd

k¼1

@

@xk

@H
@ul;k

� �
þ . . . ; l ¼ 1; . . . ;m: ð6Þ

We consider Hamiltonian systems of the form (1), where D is a constant skew symmetric operator (cf. [28]) and H the
energy (Hamiltonian). In this case, we prefer to designate the differential operator in (1) with S instead of D. The PDE pre-
serves the energy because S is skew-adjoint with respect to the L2 inner product, i.e.Z

X
uSudx ¼ 0; 8u 2 B: ð7Þ

The system (1) has I : B ! R as an integral if _I ¼
R

X
dI
du S dH

du dx ¼ 0.
Integrals C with D dC

du ¼ 0 are called Casimirs.
Besides PDEs of type (1) where D is skew-adjoint, we also consider PDEs of type (1) where D is a constant negative (semi)

definite operator with respect to the L2 inner product, i.e.Z
X

uDudx 6 0; 8u 2 B: ð8Þ

In this case, we prefer to designate the differential operator D with N and the function H is a Lyapunov function, since then
the system (1), i.e.

_u ¼ N dH
du

ð9Þ

has H as a Lyapunov function, i.e. _H ¼
R

X
dH
du N dH

du dx 6 0. We will refer to systems (1) with a skew-adjoint S and an energy H
as conservative and to systems (1) with a negative (semi) definite operatorN and a Lyapunov functionH as dissipative. Note
that the operator N need not be self-adjoint. (In Example 10, the Ginzburg–Landau equation, N ¼ @x þ �@2

x is not self-
adjoint.)

1 Although it is generally real-valued, the function u may also be complex-valued, for example, the nonlinear Schrödinger equation.
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