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a b s t r a c t

A new formulation is presented for numerically computing the helical Chandrasekhar–
Kendall modes in an axisymmetric torus. It explicitly imposes r � B = 0 and yields a stan-
dard matrix eigenvalue problem, which can then be solved by standard matrix eigenvalue
techniques. Numerical implementation and computational results are shown for an axi-
symmetric torus typical of reversed field pinch and spherical tokamak.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The eigenfunctions of the curl operator are called Beltrami functions or Beltrami-Trkalian functions. They have found
wide-spread use in fluid dynamics, plasma physics, and engineering. Yoshida [1] gave a list of specific applications with
references. These eigenfunctions in the name of Chandrasekhar–Kendall (CK) modes [2] for force-free magnetic field
received special attention in magnetized plasma physics due to the seminal work by Woltjer [3] and Taylor [4] that
force-free magnetic field is a natural state of a relaxed plasma which reaches a minimum magnetic energy state while
conserving the magnetic helicity. In addition to relaxation theory, they have also been profitably used as spectral basis
for hydrodynamic and magneto-hydrodynamic computation of a dynamical plasma [5,6], largely due to their completeness
as functional basis.

Chandrasekhar–Kendall modes [2] are eigensolutions to the force-free equation of the magnetic field B,

r� B ¼ kB; B � n̂j@X ¼ 0; ð1Þ

with homogeneous boundary conditions, which are equivalent to a vanishing vacuum magnetic field inside the discharge
chamber X. These force-free eigensolutions are uniquely determined by the chamber geometry, and play an essential role
in determining the relaxed states of a driven plasma [4,7], in which the spatial overlap of the CK modes and a vacuum field
generated by external current provides the coupling between the external helicity source and the driven plasma [8]. In fact,
resonant coupling [9–12] is the physical mechanism underlying the self-organization of system-scale magnetic fields by
magnetic relaxation in the laboratory formation of spherical tokamak [13,14], spheromak [15], and reversed field pinch
by helicity injection. It is also thought to be a competing paradigm for the generation and sustainment of large scale mag-
netic fields in astrophysical radio lobes [16].
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Although much of the design constraint and optimization for laboratory helicity injection applications involves only the
axisymmetric CK modes in an axisymmetric toroidal chamber [17,14,15], as the target magnetic configurations are axisym-
metric [18], helical or non-axisymmetric CK modes can play a subtle role in determining the operating boundary and the
degrees of intrinsic non-axisymmetry in the experiments. This comes about in two ways. The first is the resonant coupling
between non-axisymmetric error fields and the helical CK modes, which leads to an amplified helical field in a relaxed driven
plasma. The second is the possibility of a Taylor’s mixed state [7], in which a single helical CK mode provides the sink for
arbitrarily large amount of externally supplied magnetic helicity. Although a pure Taylor’s mixed state with constant k is
unlikely to be obtained experimentally, the operating boundary suggested by it does imply the onset of robust helical insta-
bilities that could saturate into large helical magnetic fields.

In both cases, the helical CK modes and their eigenvalues are required to quantify the magnetic configuration of the re-
laxed states. It turns out that numerical solution of helical CK modes requires considerably more effort than their axisym-
metric counterparts, which can be solved from the force-free Grad–Shafranov equation as a scalar eigenvalue problem with
homogeneous Dirichlet boundary conditions. The objective of this paper is to show a new formulation of the helical CK
eigenmode equations in an axisymmetric toroidal chamber and present the numerical solutions in an axisymmetric torus
typical of spherical tokamak and reversed field pinch configurations. The primary result of the paper is a new formulation
that numerically computes the helical CK modes as a standard matrix eigenvalue problem, which is suitable for numerical
implementation in a torus of complex poloidal cross section. This capability can be of use for current and future design opti-
mizations for reversed field pinch, spherical tokamak [14], and spheromak [15] experiments, and for astrophysical radio lobe
analysis [16].

2. Previous calculation of helical CK modes

2.1. Chandrasekhar–Kendall scalar function formulation

A number of earlier calculations of axisymmetric and helical CK modes were carried out using a scalar function formu-
lation of a Taylor state magnetic field. Chandrasekhar and Kendall [2] noted that a force-free field in a Taylor state can be
written as

B ¼ r� ðâwÞ þ 1
k
r�r� ðâwÞ ¼ �â�rw� 1

k
r� ðâ�rwÞ; ð2Þ

with â a fixed (does not vary in space) unit vector. For example, â can be Ẑ in a cylindrical coordinate system. Unit vector R̂, in
contrast, does not satisfy the requirement. The constraint for a Taylor state solution is for w to satisfy a scalar Helmholtz
equation,

r2wþ k2w ¼ 0: ð3Þ

There is a long history on understanding the solution space of the eigenfunctions of the curl operator [19] and the complete-
ness of the CK modes in a cylindrical geometry [1] and a spherical geometry [20]. Numerical evaluation of these modes in a
complex geometry where the analytical expression is not available has some unusual challenges. This can be seen by exam-
ining the boundary condition for B.

Let n̂ be the unit vector normal to the boundary, the boundary condition B � n̂j@X ¼ 0 implies

n̂� â � rwþ 1
k

n̂ � r � ðâ�rwÞ
� �

j@X ¼ 0: ð4Þ

One can compute the helical Taylor states in an axisymmetric chamber by using Eqs. (2) and (3). The complication in impos-
ing the boundary condition can be illustrated in a torus with rectangular poloidal cross section. One can let a ¼ Ẑ, so

n̂� Ẑ � rw ¼ 1
R
@w
@u

; for n̂ ¼ R̂;

and

n̂� Ẑ � rw ¼ 0; for n̂ ¼ Ẑ:

Recall that in cylindrical coordinates,

r� ðẐ�rwÞ ¼ � @2w
@R@Z

R̂ � 1
R

@2w
@u@Z

ûþ 1
R
@

@R
R
@w
@R

� �
� 1

R2

@2w
@u2

" #
Ẑ:

In a cylinder, the Ẑ � B vanishes at the top and bottom (Z = 0,L), which implies

1
R
@

@R
R
@w
@R

� �
� 1

R2

@2w
@u2 ¼ 0:
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