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a b s t r a c t

We present an implicit high-order hybridizable discontinuous Galerkin method for the
steady-state and time-dependent incompressible Navier–Stokes equations. The method
is devised by using the discontinuous Galerkin discretization for a velocity gradient-pres-
sure–velocity formulation of the incompressible Navier–Stokes equations with a special
choice of the numerical traces. The method possesses several unique features which distin-
guish itself from other discontinuous Galerkin methods. First, it reduces the globally cou-
pled unknowns to the approximate trace of the velocity and the mean of the pressure on
element boundaries, thereby leading to a significant reduction in the degrees of freedom.
Moreover, if the augmented Lagrangian method is used to solve the linearized system,
the globally coupled unknowns become the approximate trace of the velocity only. Second,
it provides, for smooth viscous-dominated problems, approximations of the velocity, pres-
sure, and velocity gradient which converge with the optimal order of k + 1 in the L2-norm,
when polynomials of degree kP0 are used for all components of the approximate solution.
And third, it displays superconvergence properties that allow us to use the above-men-
tioned optimal convergence properties to define an element-by-element postprocessing
scheme to compute a new and better approximate velocity. Indeed, this new approxima-
tion is exactly divergence-free, H (div)-conforming, and converges with order k + 2 for
k P 1 and with order 1 for k = 0 in the L2-norm. Moreover, a novel and systematic way is
proposed for imposing boundary conditions for the stress, viscous stress, vorticity and
pressure which are not naturally associated with the weak formulation of the method. This
can be done on different parts of the boundary and does not result in the degradation of the
optimal order of convergence properties of the method. Extensive numerical results are
presented to demonstrate the convergence and accuracy properties of the method for a
wide range of Reynolds numbers and for various polynomial degrees.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, discontinuous Galerkin (DG) methods have emerged as a competitive alternative for numerically solving
the incompressible Navier–Stokes equations [3,18,19,32,44]. The advantages of the DG methods over classical continuous
Galerkin finite element, finite difference and finite volume methods are well-documented in the literature (see [5,6,21]
and references therein): the DG methods work well on arbitrary meshes, result in stable high order discretizations of the
convective and diffusive operators, allow for a simple and unambiguous imposition of boundary conditions and are well
suited for parallelization and adaptivity. Despite all these advantages, there are still obstacles which prevent DG methods
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from becoming the method of choice for a wide class of applications. One such obstacle is the high computational cost asso-
ciated with DG methods which can be traced to the larger number of globally coupled unknowns when compared to con-
tinuous Galerkin finite elements, finite differences, or finite volume schemes.

In this paper, we introduce a hybridizable discontinuous Galerkin (HDG) method for the numerical solution of the incom-
pressible Navier–Stokes equations. The HDG methods were first introduced for diffusion [13] and continuum mechanics
[26,45] problems. They were analyzed in [7,15,17], see also [16], in the setting of diffusion problems, and then developed
for linear and nonlinear convection–diffusion problems [8,37,38,46], Stokes flow [4,11,14,39,40]. The HDG method for the
compressible Euler and Navier–Stokes equations is introduced in [43]. An overview of recent development of HDG methods
is provided in [41]. The HDG methods retain the advantages of standard DG methods and provide a significantly reduced
number of globally-coupled degrees of freedom, thereby allowing for a substantial reduction in the computational cost.

In this paper, we devise the first HDG method for the incompressible Navier–Stokes equations by extending the HDG
methods for convection–diffusion [37,38] and the HDG methods for the Stokes system [14,39,40], and showing that the dis-
tinctive advantages of those HDG methods are retained, namely:

� Reduced number of degrees of freedom. Unlike all known other DG methods, which result in a final system involving
the degrees of freedom of the approximate velocity and pressure, the HDG method produces a final system involving the
degrees of freedom of the approximate trace of the velocity and the mean of pressure. Since the approximate trace is
defined on the element borders only and since the mean of pressure is a piece-constant function, the HDG method has
significantly less globally coupled unknowns than other DG methods, especially for high-degree polynomial approxima-
tions. Moreover, if the augmented Lagrangian method [23] is used to solve the linearized system, the globally coupled
unknowns become the approximate trace of the velocity only. This large reduction in the degrees of freedom leads to sig-
nificant savings for both computational time and memory storage.
� Optimal convergence. The HDG method provides an approximate velocity, pressure and velocity gradient converging

with the optimal order k + 1 in the L2-norm for viscous-dominated flows with smooth solution; here k is the degree of
the polynomials used to represent all components of the approximate solution. This has to be contrasted with the fact
that all known DG methods display the suboptimal order of convergence of k for the approximate pressure and for the
velocity gradient or the vorticity. This includes, the first DG method for the Navier–Stokes equations [28,29], as well
as the family of DG methods for the Navier–Stokes equations proposed in [18,19].
� Superconvergence and local postprocessing. The HDG method has superconvergence properties for the velocity which,

combined with the above-mentioned optimal converge properties, allows us to use an element-by-element postprocess-
ing, proposed in [14] for HDG methods for Stokes flow, to obtain a new and better approximation of the velocity. Unlike
the original velocity, the postprocessed velocity is exactly divergence-free, H (div)-conforming, and converges with order
k + 2 for k P 1. Since the postprocessing is performed at the element level, the computational cost involved in obtaining
the postprocessed velocity is very small.
� Unified treatment of boundary conditions and the numerical fluxes. The HDG method entails a single numerical flux

formulae containing both the viscous and inviscid numerical fluxes. Different boundary conditions can be included in a
single framework by defining appropriate numerical fluxes on the boundaries of the physical domain. This novel and sys-
tematic manner of imposing boundary conditions allows for pressure, vorticity and stress boundary conditions to be pre-
scribed on different parts of the boundary.

Let us briefly emphasize the fact that, to the knowledge of the authors, no other known DG or mixed method for the Na-
vier–Stokes equations has all the above four properties of these HDG methods. Note that, as we pointed out in [40], some DG
methods provide velocities that are divergence-free inside each of the element which, however, do not lie on H (div) since
their normal component has no interelement continuity. Examples are the first DG method proposed for the Stokes system
[2] and for the Navier–Stokes equations in [28] and, more recently, and the DG method for the Stokes equations proposed in
[33] and in [34] for the Navier–Stokes equations. Note also that there are DG methods that do provide velocities that are
divergence-free and belong to H (div). A wide family DG methods with this property were introduced in [18] for the Na-
vier–Stokes equations, even though only a particular case was treated in detail therein. Other particular cases were devel-
oped later in [19] and (for the Stokes problem) in [47,49]; the latter method was then extended to the Navier–Stokes
equation in [48]. Finally, note that the first DG method whose formulation involves H (div)-conforming velocities with are
also divergence-free was proposed in [4] for the Stokes equations; see also [9,10] for an extension of this approach to a mixed
method. However, their velocities converge with order at most k + 1 for k P 1.

Recently, there have been new developments in DG methods—the multiscale discontinuous Galerkin (MDG) method [27]
and the embedded discontinuous Galerkin method (EDG) [13,26]—which aim to reduce the globally coupled degrees in a DG
discretization. Like the HDG method, these DG methods solve for the approximate trace of the field variables. However, un-
like the HDG method, the approximate trace in these methods resides in a C0 space. Therefore, neither the MDG nor the EDG
method have the local conservativity property of the HDG method. As a consequence, see [16], these DG methods do not
have some superconvergence properties of the HDG method and hence their approximate solution can not be postprocessed
to yield a higher-order convergent approximation. Further development of the MDG method for the incompressible
Navier–Stokes equations leads to the so-called Galerkin interface stabilisation (GIS) method [31]. As expected, the GIS
method provides suboptimal convergence for the approximate pressure and stress even for the Stokes system.
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