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ular. Such methods are gaining popularity because they simplify a number of computational
issues. These range from gridding the fluid domain, to designing and implementing
Eulerian-based algorithms for challenging fluid-structure applications characterized by
large structural motions and deformations or topological changes. However, because they
typically operate on non body-fitted grids, immersed boundary and ghost fluid methods
also complicate other issues such as the treatment of wall boundary conditions in general,
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Ghost fluid method and fluid-structure transmission conditions in particular. These methods also tend to be at
Higher-order best first-order space-accurate at the immersed interfaces. In some cases, they are also
Immersed boundary method provably inconsistent at these locations. A methodology is presented in this paper for
Operator matching addressing this issue. It is developed for inviscid flows and prescribed structural motions.
Surrogate interface For the sake of clarity, but without any loss of generality, this methodology is described

in one and two dimensions. However, its extensions to flow-induced structural motions
and three dimensions are straightforward. The proposed methodology leads to a departure
from the current practice of populating ghost fluid values independently from the chosen
spatial discretization scheme. Instead, it accounts for the pattern and properties of a
preferred higher-order discretization scheme, and attributes ghost values as to preserve
the formal order of spatial accuracy of this scheme. It is illustrated in this paper by its
application to various finite difference and finite volume methods. Its impact is also demon-
strated by one- and two-dimensional numerical experiments that confirm its theoretically
proven ability to preserve higher-order spatial accuracy, including in the vicinity of the
immersed interfaces.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Eulerian immersed boundary and ghost fluid methods (for example, see [1-4] and references cited therein) are usually
preferred over alternative approaches based, for example, on the Arbitrary Lagrangian Eulerian framework [5,6], for the solu-
tion of fluid-structure interaction (FSI) problems characterized by large structural motions and/or deformations or by topo-
logical changes. Such methods allow a rigid or flexible moving body to penetrate the CFD (computational fluid dynamics)
grid. For this reason, they operate on non body-fitted grids. They typically distinguish between “real” (or “active”) fluid grid
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points lying in the physical fluid domain, and “ghost” (or “inactive” or “fictitious”) fluid grid points lying inside the moving
obstacle. This distinction is usually a dynamic one because FSI problems are typically dynamic problems. When at the end of
a computational time-instance t" the status of a fluid grid point changes from real to ghost — which is referred to in this
paper as the RTG scenario — the value of the fluid state vector at this ghost point must be provided in order to enable
the advancement of the flow computation to the next time-instance t"*!. Similarly, when at the end of t" the status of a fluid
grid point changes from ghost to real — which is referred to here as the GTR scenario — a new value of the fluid state vector
must be provided at this grid point.

For the RTG scenario, most approaches proposed in the literature fall into two categories. The first one consists of meth-
ods which project a ghost fluid grid point onto the fluid-structure interface (see Fig. 1.1), interpolate the velocity of the struc-
ture at the projection point, and set the value of the fluid velocity vector at the ghost fluid grid point (or the normal
component of this vector when the flow is assumed to be inviscid) to this interpolated value (or its normal component
for inviscid flows) [7,2]. This enforces an approximate form of the non-penetration condition at the fluid-structure interface.
In this case, the remaining primal variables of the fluid state vector at the ghost fluid grid point (density, pressure, or entro-
py) are computed by first approximating their counterparts at the projection point using data from nearby real fluid grid
points and either interpolation or extrapolation, then extrapolating the obtained values to the location of that ghost fluid
grid point. Hence, this category of methods is easy to implement. However, it is only first-order accurate in space. For this
reason, it is often equipped with adaptive mesh refinement (AMR) [8,2] in the vicinity of the fluid-structure interface. This
improves its practical accuracy, but at the cost of an increase of its implementational (and computational) complexity, espe-
cially in three dimensions (3D). The methods in the second category [4,9] can be labeled as “mirroring” methods. Not only
they project a ghost fluid grid point of interest onto the fluid-structure interface, but they also determine its reflection with
respect to the tangential interface — a line in two dimensions (2D) and a plane in three dimensions (3D) — containing the
projection point. Since a mirroring point usually falls in the physical fluid domain, the fluid state variables at this point are
computed by interpolation. Then, the fluid state vector at the ghost fluid grid point is computed as follows. The fluid velocity
vector (or its normal component in the case of an inviscid flow) is obtained by linearly extrapolating the interpolated fluid
velocity vector at the mirroring point and the structural velocity vector at the projection point (see Fig. 1.2). The values of the
remaining primal fluid variables at the ghost fluid grid point are set to the interpolated values at the mirroring real fluid grid
point. In theory, the spatial accuracy of this second category of methods is one order higher than that of the first one
described above. However, to the best of knowledge of the authors, second-order spatial accuracy has been reported for such
methods only for the case of a stationary fluid-structure interface [9]. For genuine FSI problems with dynamic fluid-
structure interfaces, the mirroring procedure is sometimes combined with local grid refinement (for example, see [4]) to
enhance the delivered spatial accuracy in the vicinity of the fluid-structure interface.

For the GTR scenario, two different computational strategies can be found in the literature. In the first one, the fluid state
vector at a fluid grid point which switches from the ghost to the real status at the end of time-instance t" is determined from
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Fig. 1.1. Projection approach (2D illustration).
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