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Abstract

The paper deals with a numerical method for aerodynamic shape optimization. It is based on simultaneous pseudo-

timestepping in which stationary states are obtained by solving the non-stationary system of equations representing the

state, costate and design equations. The main advantages of this method are that it requires no additional globalization

techniques and that a preconditioner can be used for convergence acceleration which stems from the reduced SQP

method. A design example for drag reduction for an RAE2822 airfoil, keeping its thickness fixed, is included. The over-

all cost of computation is less than four times that of the forward simulation run.
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1. Introduction

Applications of numerical optimization techniques in the field of aerodynamics are an active area of re-

search. With the advancement of computer technology and availability of fast solvers, the field of Compu-

tational Fluid Dynamics has made considerable progress. The FLOWer code [22,23] of the German

Aerospace Center (DLR) presents one such example which we use for the solution of the Euler and the
adjoint Euler equations. Despite many recent advances in the field of aerodynamic shape optimization,

much important research remains to be done. Several works in this field have been reported in last three

decades using different numerical techniques. Gradient methods are among the most commonly applied
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methods in practical problems of this field. In this method, one of the main issues is the efficient compu-

tation of the sensitivity derivatives. Among various techniques reported for this purpose, the continuous

adjoint method has gained considerable attention since its derivation by Jameson in [15].

The focus of the present work is on optimal control problems, and in particular the sub-class of shape

design problems. Pioneering theoretical works on the methodology for solving such problems have been

presented in [25,28–30]. These problems can be written in abstract form as

min Iðw; qÞ
s:t: cðw; qÞ ¼ 0;

ð1Þ

where (w,q) 2 X · P (X,P are appropriate Hilbert spaces), I :X � P ! R and c:X · P ! Y are twice Frechet-

differentiable (with Y an appropriate Banach space). The Jacobian, J = (oc)/(ow), is assumed to be invert-

ible. Here, the equation c(w,q) = 0 represents the steady-state flow equations (in our case Euler equations)

together with boundary conditions, w is the vector of dependent variables and q is the vector of design var-
iables. The objective I(w,q) is the drag of an airfoil for the purposes of this paper. Typically, there arise

inequality constraints of the form

hðw; qÞ P 0;

which in practical applications, often pose severe restrictions on the validity region of the model or for the

design construction. In the present work we are outlining a framework for unconstrained optimization, and

the addition of constraints is addressed in the subsequent work [12].
The necessary optimality conditions can be formulated using the Lagrangian functional

Lðw; q; kÞ ¼ Iðw; qÞ � k�cðw; qÞ; ð2Þ
where k is the Lagrange multiplier or the adjoint variable from the dual Hilbert space. If ẑ ¼ ðŵ; q̂Þ is a min-

imum, then there exists a k̂ such that

rzLðẑ; k̂Þ ¼ rzI ð̂zÞ � k̂
�
rzcðẑÞ ¼ 0: ð3Þ

Nomenclature

ðx; yÞ 2 R2 Cartesian coordinates
(n,g) 2 [0,1]2 generalized coordinates

X flow field domain

oX = B [ C flow field boundary

B farfield boundary

C solid wall, airfoil

~n :¼ nx
ny

� �
unit outward normal

a angle of attack

q density
�q ¼ unx þ vny velocity

u x-component of velocity

v y-component of velocity

p pressure

E total energy

H total enthalpy
M Mach number

)1 values at free stream

c ratio of specific heats

Cref chord length

Cp pressure coefficient

CD drag coefficient

CL lift coefficient

Cm pitching moment coefficient
I cost unction

w vector of state variables

q vector of design variables

k vector of adjoint variables

J Jacobian
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