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a b s t r a c t

One major issue in the accurate solution of advection-dominated problems by means of
high-order methods is the ability of the solver to maintain monotonicity. This problem is
critical for spectral elements, where Gibbs oscillations may pollute the solution. However,
typical filter-based stabilization techniques used with spectral elements are not monotone.
In this paper, residual-based stabilization methods originally derived for finite elements
are constructed and applied to high-order spectral elements. In particular, we show that
the use of the variational multiscale (VMS) method greatly improves the solution of the
transport-diffusion equation by reducing over- and under-shoots, and can be therefore
considered an alternative to filter-based schemes. We also combine these methods with
discontinuity capturing schemes (DC) to suppress oscillations that may occur in proximity
of boundaries or internal layers. Additional improvement in the solution is also obtained
when a method that we call FOS (for First-Order Subcells) is used in combination with
VMS and DC. In the regions where discontinuities occur, FOS subdivides a spectral element
of order p into p2 subcells and then uses 1st-order basis functions and integration rules on
every subcell of the element. The algorithms are assessed with the solution of classical
steady and transient 1D, 2D, and pseudo-3D problems using spectral elements up to order
16.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

A large number of physical applications relies on the accurate solution of the transport-diffusion equation

@q
@t
þ LðqÞ ¼ f ; ð1Þ

where q is the concentration of the tracer, LðqÞ ¼ u � rq�r � ðmrqÞ, m > 0 is a diffusion coefficient, u is a known velocity
field, and f is a source term. The solution of (1) should respect two significant properties: (i) positivity should be pre-
served, and (ii) smearing at internal and boundary layers should not be excessive. These properties are extremely impor-
tant in the context of transport in the atmosphere. Both limited-area and global atmospheric models for weather
prediction need monotonic advection of tracers and moisture variables, otherwise the wrong amount of precipitation
would be forecasted. Simple microphysics schemes, such as the Kessler parameterization [1], require three variables
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(water vapor, cloud water, and rain), whereas more sophisticated parameterizations include additional variables such as
ice and snow [2]. Similarly, climate models require transport of hundreds of tracers, each representing a different chemical
species. Regardless of the physical scales of the model, tracers must remain positive since the physical parameterizations
that govern sub-grid scale processes such as auto-conversion and sedimentation, implicitly assume such a condition. These
issues have been addressed for both transient and stationary problems (see, e.g., [3]) and, in the context of finite element
methods, so-called stabilized methods have been an active topic of research since their introduction in the early 1980s
with the streamline-upwind method of Hughes and Brooks [4]. In this paper we address the problem of solving (1) by
high-order spectral element methods (SEM) without losing the ability to approach a monotone solution of the problem.
Higher-order accuracy, in fact, comes at the price of aliasing phenomena in the solution [5], but the anti-aliasing filters
typically used to give a stable spectral element solution do not respect conditions (i) and (ii) described above. Therefore,
to achieve monotonic results with high-order spectral elements, we consider stabilization schemes originally devised for
finite elements, and focus on techniques that can be derived directly from subgrid scale considerations as originally defined
in [6,7] in the context of variational multiscale methods. These schemes assure stability by designing a diffusion-type term
that is added to the Galerkin formulation of the original problem.

The first stabilized schemes based on the addition of a diffusive stabilization term to the Galerkin equation are the Arti-
ficial Viscosity methods (AV) [8] and the streamline-upwind method (SU) [4]. AV, or hyper-viscosity (HV), is often used in atmo-
spheric and ocean modeling due to the property of preserving the correct energy cascade in simulations that involve
turbulence. The SU scheme uses the information in the direction of the flow to add viscosity only in the streamline direction.
Both methods use a constant diffusion coefficient that does not typically change from element to element. A major improve-
ment came by introducing the residual of the governing equation in the definition of the stabilization term. When the com-
puted solution approaches the exact solution, the stabilization term should vanish. This strategy is known as residual
weighting and generates a family of stabilization methods used mostly in FEM-based Computational Fluid Dynamics
(CFD). These schemes, which are consistent in that the stabilization terms goes to zero as the numerical solution approaches
the exact solution, are considered in this paper. The most commonly used are the streamline-upwind/Petrov–Galerkin (SUPG)
and the Galerkin/Least-Squares (GLS), devised in 1982 [9] and 1989 [10], respectively, as a consistent counterpart to SU. GLS
was designed as a generalization of SUPG, but in the limit of pure advection, or for piece-wise linear elements, the GLS and
SUPG methods are equivalent. Stability analysis for these two methods is detailed in [11,12,10]. The Gradient Galerkin/Least-
Squares [13] for advection–diffusion with a reaction term, or the Unusual Stabilized Finite Element Method (USFEM) [14,15] are
a few examples. In the framework of high-order methods, Petrov–Galerkin stabilization was applied by Pasquarelli and
Quarteroni [16] to stabilize the advection–diffusion equation with the spectral method. Canuto used bubble functions to
address the same issue [17] (see also [18,19]).

The analyses of Hughes [6], Hughes and Stewart [20], and Hughes et al. [7] form the unifying theory of all stabi-
lized finite element methods. According to this theory, stabilized methods are subgrid scale models where the unre-
solved scales are intimately related to the instabilities at the level of the resolved scales, and thus should be used in
the construction of the stabilization term. These schemes are known as variational multiscale (VMS) methods. Details
are given in Section 2.2.2. VMS methods are all residual-based methods that improve the stability properties of the
solution, and preserve the accuracy of the underlying numerical scheme [21]. However, Godunov’s theorem [22]
implies that the latter property may be violated in the proximity of discontinuities or strong gradients. To the authors’
knowledge, the only application of VMS to spectral elements is the work of Wasberg et al. [23] in the context of large
eddy simulation.

Neither SUPG, GLS, nor VMS, however, preclude the formation of over- and under-shoots in the proximity of sharp
gradients of the solution. For this reason, discontinuity capturing (DC) techniques, also referred to as spurious oscillations
at layers diminishing (SOLD) methods are used in combination with SUPG and VMS to introduce an additional term to the
stabilized form of the equation. This issue was treated for the first time in [24], where details on how to build the
stabilization parameter are also given, and in [25] for non-linear problems. A detailed review of most existing SOLD
schemes can be found in a two-part paper by John and Knobloch [26,27], where a modification of the discontinuity-
capturing of Codina [28] is presented and is shown to be a promising option for FE solutions characterized by boundary
layers.

All these methods strongly depend on a parameter that will be identified by s throughout the paper. It will be also re-
ferred to as intrinsic time. A classical result for s was obtained by Franca et al. in [29] by error analysis. Their result was repro-
duced by other authors using different approaches. Additional expressions for s were found by Codina in [30,31], by Codina
et al. in [32], by Harari and Hughes in [13], and by Shakib et al. in [33], who based the derivation on the (discrete) maximum
principle. Another expression is due to Franca and Valentin [15] who based their derivation on convergence and stability
analysis. Starting with the formalization of VMS methods by Hughes [6], s has often been derived using Green’s functions,
a thorough analysis of which is done by Hughes and Sangalli in [34]. Recently, Houzeaux et al. [35] proposed a new way to
derive the approximate subgrid scale solution, with results that are comparable to those of Hauke and García-Olivares in
[36]. In [37], Codina builds s using the Fourier analysis of the problem; however, determining s remains open. For this rea-
son, we propose s for higher-order spectral elements and use it to construct an appropriate stabilization method. To further
improve the solution, we combine VMS and DC with a method that we here call FOS (for First-Order Subcells). This technique
subdivides a tensor product spectral element of order p and dimension d into pd subcells, and then uses 1st-order basis
functions and integration rules on every subcell of the element.
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