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a b s t r a c t

We present a block preconditioner for the efficient solution of the linear systems that arise
when employing Newton’s method to solve monolithically-coupled large-displacement
fluid–structure interaction problems in which the update of the moving fluid mesh is per-
formed by the equations of large-displacement elasticity. Following a theoretical analysis
of the preconditioner, we propose an efficient implementation that yields a solver with
near-optimal computational cost, in the sense that the time for the solution of the linear
systems scales approximately linearly with the number of unknowns. We evaluate the per-
formance of the preconditioner in selected two- and three-dimensional test problems.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Large-displacement fluid–structure-interaction (FSI) problems are multi-physics problems in which elastic solids interact
with finite-Reynolds-number flows. Applications exist in many areas such as physiological fluid mechanics [1,2], the design
of parachutes [3], tent structures [4], and artificial heart valves [5]. The accurate, robust and efficient numerical simulation of
such problems poses considerable challenges, not just from a mathematical but also from a software engineering perspec-
tive. A key objective in the design of solvers for all multi-physics problems is the ability to re-use existing, often highly-opti-
mised solvers for the constituent single-physics (here fluid and solid mechanics) problems. In so-called partitioned (or
segregated) approaches, this re-use is achieved at the level of the nonlinear solvers, typically by coupling the existing sin-
gle-physics solvers in a fixed-point iteration: starting from an initial guess for the shape of the fluid-loaded solid, compute
the fluid flow (keeping the geometry of the domain fixed); determine the traction that the fluid exerts onto the elastic solid;
compute the resulting deformation of the solid (keeping the fluid traction constant); and iterate until convergence. Such
solvers are relatively easy to implement but they often suffer from a serious lack of robustness and tend to require heavy
under-relaxation (resulting in slow convergence rates) to avoid the divergence of the fixed-point iteration, even in cases
when good initial guesses for the solution are available. A variety of methods have been developed to accelerate the conver-
gence of the fixed-point iteration (e.g. vector-based [6,7] or component-wise [8] Aitken extrapolation, and steepest decent
methods; see e.g. [9] for a recent comparison of some of these methods). In many cases such partitioned approaches work
satisfactorily. However, there are also many applications (particularly problems in which the fluid interacts with a
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thin-walled solid of comparable or smaller density – a situation that is encountered frequently in physiological FSI problems)
where the lack of robustness due to the so-called ‘‘added mass effect’’ [10] presents a significant problem. The convergence
problems in the fixed-point iteration may be bypassed by employing so-called loosely coupled schemes [11]. However, these
are only applicable to unsteady problems and obtain a solution by solving the constituent single-physics problems sequen-
tially; see [12–14] for a discussion of the accuracy and stability of such methods.

The main alternative to partitioned approaches are so-called monolithic solvers which operate directly on the large sys-
tem of nonlinear algebraic equations that arises from the fully-coupled implicit discretisation of the fluid and solid equa-
tions. Starting from an initial guess for the vector of the discrete unknowns, x½0�, and the corresponding vector of discrete
residuals r½0� ¼ rðx½0�Þ, Newton’s method can be used to solve the problem via the repeated solution of (large) linear systems
of the form

J½m�Dx½m� ¼ �r½m�; ð1Þ

followed by the update x½mþ1� ¼ x½m� þ Dx½m�. Here J½m� is the Jacobian matrix formed from the derivatives of the discrete resid-
uals, r, with respect to the discrete unknowns, x. Provided a good initial guess for the solution can be supplied (by contin-
uation methods or timestepping), Newton’s method is extremely robust and converges quadratically.

While attractive from a theoretical perspective, the practical implementation of such solvers poses its own challenges.
From a software engineering point-of-view, it is difficult to implement monolithic solvers starting from separate fluid and
solid mechanics codes, particularly if these are ‘‘black-box’’ closed-source codes for which the residuals and their derivatives
are difficult to obtain. Interface Newton–Krylov methods (e.g. [15]) bypass this problem by employing a Newton method that
operates only on the variables that define the position of the FSI interface, but even these methods require (or benefit from)
additional knowledge about the underlying fluid and solid equations and their specific discretisation. Monolithic solvers are
easiest to implement within a software framework that facilitates the formulation of multi-physics interactions via small,
hierarchical modifications to any already-existing single-physics capabilities. This requirement lends itself to an object-ori-
ented design in which multi-physics interactions are easily implemented using techniques such as function overloading,
templating and multiple inheritance. We refer to [16] for a discussion of how this approach is implemented in oomph-

lib, the object-oriented multi-physics finite element library (available as open-source software at http://www.oomph-
lib.org), which was used for the computations presented in this paper.

The key mathematical challenge in the solution of fluid–structure interaction problems by monolithic approaches is how
to efficiently solve the large system of nonlinear algebraic equations arising from the fully-coupled implicit discretisation of
the fluid and solid equations, a task has frequently been described as being prohibitively expensive (see, e.g., [17,18]). How-
ever, more recent studies [19,20] have shown that monolithic approaches are not only competitive with partitioned
schemes, but often outperform them, even in problems in which partitioned solvers do not suffer from any convergence
problems. Possible approaches to the solution of the nonlinear equations are the use of nonlinear block Gauss–Seidel or
block-Newton methods [21,22], methods that operate on the FSI interface problem [23,24], or partitioned Newton methods
[25]. In this paper we employ Newton’s method in its exact form and focus on the development of an efficient preconditioner
for the solution of the linear system (1) by Krylov subspace solvers such as GMRES. We will exploit the block structure of the
Jacobian matrix to derive a preconditioner, P, chosen such that GMRES, applied to the preconditioned linear system

P�1J Dx ¼ �P�1r ð2Þ

(where we have dropped the superscript m) converges in a number of iterations that is much smaller than the iteration count
for the original linear system (1). The development of the preconditioner is guided by two requirements:

1. P should be chosen such that the preconditioned matrix P�1J has a spectrum that contains only a few small clusters of
eigenvalues where each cluster is tightly bounded away from the origin of the complex plane. If these bounds on the
spectrum are independent of the discretisation, GMRES will converge in a near constant number of iterations regardless
of the number of unknowns in the problem [26, p. 54].

2. The setup and application of the preconditioner (i.e. the solution of linear systems of the form Pu ¼ v) should have opti-
mal computational cost, i.e. be linear in the number of unknowns.

A preconditioning strategy that satisfies these two requirements will result in a solver that itself has optimal computa-
tional cost.

We restrict ourselves to ALE-based discretisations of the FSI problem in which the fluid equations are solved on a body-
fitted, moving mesh [27]. In earlier work [28,19] we developed an efficient block triangular preconditioner for the linear sys-
tems arising from the monolithic discretisation of such problems for the special case in which the update of the fluid mesh in
response to the wall deformation is performed by a (user-specified) algebraic node update function. This approach allows
fast, sparse node updates but requires significant user input and is restricted to relatively simple geometries and to problems
in which the deformation of the fluid-loaded solid can be anticipated a priori. Furthermore, the block-triangular precondi-
tioners were obtained by omitting certain coupling blocks in the Jacobian matrix in an ad hoc manner. This made it difficult
to analyse the preconditioners theoretically, and forced us to evaluate their performance exclusively by means of numerical
experiments. In the current paper we present a new preconditioning methodology for the alternative approach in which the
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