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Abstract

A nodal triangle-based spectral element (SE) method for the shallow water equations on the sphere is presented. The

original SE method uses quadrilateral elements and high-order nodal Lagrange polynomials, constructed from a tensor-

product of the Legendre–Gauss–Lobatto points. In this work, we construct the high-order Lagrange polynomials

directly on the triangle using nodal sets obtained from the electrostatics principle [J.S. Hesthaven, From electrostatics

to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM Journal on Numerical Analysis 35 (1998)

655–676] and Fekete points [M.A. Taylor, B.A. Wingate, R.E. Vincent, An algorithm for computing Fekete points in

the triangle, SIAM Journal on Numerical Analysis 38 (2000) 1707–1720]. These points have good approximation prop-

erties and far better Lebesgue constants than any other nodal set derived for the triangle. By employing triangular

elements as the basic building-blocks of the SE method and the Cartesian coordinate form of the equations, we can

use any grid imaginable including adaptive unstructured grids. Results for six test cases are presented to confirm the

accuracy and stability of the method. The results show that the triangle-based SE method yields the expected exponen-

tial convergence and that it can be more accurate than the quadrilateral-based SE method even while using 30–60%

fewer grid points especially when adaptive grids are used to align the grid with the flow direction. However, at the

moment, the quadrilateral-based SE method is twice as fast as the triangle-based SE method because the latter does

not yield a diagonal mass matrix.
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1. Introduction

The recent trend towards distributed-memory computers having thousands of commodity processors has

rekindled interest in the development of local high-order methods for the simulation of geophysical fluid

dynamics applications. The most common local high-order method is the spectral element (SE) method.
The SE method can be constructed in modal (spectral) or nodal (physical) space. In addition, the build-

ing-blocks (or element shapes) used for the SE method have been the quadrilateral or the triangle. If quad-

rilaterals are used then the SE method is typically employed in nodal space where the basis functions are

constructed from a tensor-product of the one-dimensional Legendre cardinal functions [16]. However, if

triangles are used then the SE method has been typically employed only in modal space [26]. This was

due to the lack of a good set of nodal points for the triangle.

Using the electrostatics principle, Hesthaven [17] obtained a set of nodal points on the triangle with good

approximation properties for all polynomials of order N < 11. For 11 6 N 6 15, we use the Fekete points
[29] which are only currently available for orders N < 20. Using this nodal set, Warburton et al. [31] showed

exponential convergence for the incompressible Navier–Stokes equations. The success of these results has

inspired us to seek similarly successful applications of this nodal triangular set for the solution of the

shallow water equations on the sphere.

The shallow water equations are a set of first-order nonlinear hyperbolic equations, which contain all of

the horizontal operators found in the primitive atmospheric equations used in numerical weather prediction

(NWP) and climate models. Thus to design a good atmospheric model requires a good shallow water

model. The construction of fast, accurate, and flexible atmospheric models is the ultimate goal of our
research. In this quest, we have successfully developed an exponentially convergent global atmospheric

model using the nodal quadrilateral-based SE method [13,14]. While the accuracy and performance of this

model have been shown to exceed those of operational spectral transform models, developing adaptive

grids for quadrilateral elements may prove too cumbersome to pursue. The existence of numerous adaptive

triangular mesh generation packages [1,8] motivates us to explore nodal triangle-based SE methods.

The rest of the paper is organized as follows. Section 2 describes the governing equations of motion used

to test our numerical method. In Section 3, we describe the discretization of the governing equations. This

includes the spatial discretization by the triangle-based SE method and the time-integrator. In Section 4, we
describe a few of the many possible triangular tessellations of the sphere. Finally, in Section 5, we present

convergence rates of the nodal triangle-based SE method and compare it with the quadrilateral-based SE

method. This then leads to some conclusions about the feasibility of this approach for constructing future

atmospheric models and a discussion on the direction of future work.

2. Shallow water equations

The shallow water equations are a system of first-order nonlinear hyperbolic equations, which govern

the motion of an inviscid incompressible fluid in a shallow depth. The predominant feature of this type

of fluid is that the characteristic length of the fluid is far greater than its depth which is analogous to

the motion of air in the atmosphere and water in the oceans. For this reason, these equations are typically

used as a first step toward the construction of either NWP, climate, or ocean models.

The spherical shallow water equations in Cartesian advective form are

o/
ot

þr � ð/uÞ ¼ 0; ð1Þ

ou

ot
þ u � ru ¼ �f x� uð Þ � r /þ /sð Þ � lx; ð2Þ
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