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applied as a method of removing the so-called “corner problem”, whereby the direction of
the outward normal at geometric discontinuities is ill-defined. In the present method, both
fluxes associated with differing directions of the outward normal at a corner are consid-
ered, allowing a single node to be placed at that position. This prevents any loss of
information at what can be an important part of the boundary, especially if considering
simulations of wave reflection and wave run-up. The method is compared to both the
double node approach and the use of discontinuous elements and is shown to be a more
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Corner problem accurate technique. The success of the method is further demonstrated by its ability to
Free surface waves accurately simulate various problems involving wave transmission and wave-structure
Numerical wave tank interactions at domain corners; the results being achieved without the need for filtering,

smoothing or re-gridding of any kind.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Following the first application of a boundary integral approach to the simulation of free surface fluid flows by Longuet-
Higgins and Cokelet [1], boundary element methods (BEM) have been increasingly successful in modelling surface water
waves. Most recent advances have concentrated on the use of a BEM approach in the context of a “numerical wave tank”,
whereby waves are generated and absorbed within a closed domain in physical space. By choosing to define the domain
in real-space, rather than conformally mapping the free surface, there are no requirements such as the periodicity of the
problem or uniform depth. However, one unfortunate consequence of a real-space domain is the presence of discontinuous
boundary intersections, commonly termed “corners”. At these corners the direction of the outward normal vector to the
boundary is undefined, leading to inaccuracies and the build up of numerical errors within a time-marched simulation.
Unfortunately the formulation of a BEM, involving repeated integration around the boundaries of the domain, is such that
errors arising at the corners will not remain local but will rapidly evolve throughout the computational domain.

In the context of BEM-based wave models, two approaches have traditionally been applied to overcome the corner prob-
lem. The first, termed the double node approach, is to specify two nodes at the corner such that they share exactly the same
position; one node being associated with each element which makes up the corner. Much work using this technique has
been undertaken, some notable examples for two dimensional problems including Grilli et al. [2], Grilli and Svendsen [3],
Grilli and Subramanya [4] and Grilli and Horillo [5]. Whilst the double node technique allows for information to be obtained
at the corner position itself (important when considering wave-structure interactions, for example), compatibility of
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attributes such as the potential and the velocity between the two nodes must be explicitly enforced. An alternative approach,
not as widely used for numerical wave simulations, is to specify discontinuous elements at the domain corners. Within these
discontinuous elements the functional representation is usually linear and the nodes which would be placed at the corner
are instead moved a short distance inside the element, away from the discontinuity. Although this avoids many of the result-
ing problems, the interaction at the corner itself is not rigorously examined and therefore important effects may be lost.

This paper investigates the use of multiple fluxes (first outlined for general potential problems in a text by Brebbia and
Dominguez [6]) as an alternative way to overcome the corner problem. Section 2 provides a brief outline of the mathematical
formulation. This forms the basis of the numerical implementation described in Section 3, with particular emphasis being
placed on the description of the corners and the application of the multiple flux representation. Section 4 demonstrates
the success of the method via a wide-ranging set of examples including large amplitude standing waves, transmission
through an open boundary and wave run-up on a vertical wall. The paper concludes in Section 5 with comments on the ben-
efits of the proposed scheme and the opportunities it affords.

2. Mathematical formulation
2.1. Governing equations

Within the domain Q, defined in Fig. 1, the flow is considered to be inviscid and irrotational. Accordingly, it can be de-
scribed by a velocity potential ¢(x,z,t) with a velocity field given by u = V¢ = (u,w), where the Cartesian co-ordinates
(x,z) are again defined in Fig. 1. Mass conservation, which must be satisfied throughout the domain @, is then described
by Laplace’s equation

V2$=0 inQ. 1)
Taking the free space Green’s function G(r) = — 5= In(r), which is a fundamental solution to Laplace’s equation, Green’s
2nd identity gives the boundary integral equation (BIE) as
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This relates the velocity potential at a point p to the potentials and potential fluxes at points q around the boundary I'. The
distance between points p and q is given by r = |x, — X,|, where X, = (x,,2,) and X, = (X4, Z;) are the position vectors of the
points, n is the unit outward normal vector, and c, is a geometric coefficient. Within this paper, a rigid mode technique is
used in order to avoid the explicit calculation of c,. Further details concerning the derivation and application of Eq. (2)
are given in [6].

The movement of the free surface, I's, must satisfy both the kinematic and dynamic free surface boundary conditions
(KFSBC and DFSBC); the former ensuring that the water surface is a streamline, and the latter that the pressure on the water
surface remains constant. In a semi-Lagrangian frame, allowing the surface points to move vertically but not horizontally,
these conditions are described in [7] as
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the differential operator § being chosen to represent the semi-Lagrangian nature of the formulation and defined by
8/t = 9/0t + wd/0z. Alternatively, in a Lagrangian frame whereby points on the free surface are free to follow the fluid
the KFSBC and DFSBC are given in [1] as

L,

Fig. 1. General domain used for computations. The boundary is composed of sections I'y, I'y, I's and I';, along which integrations are carried out in an
anticlockwise direction, indicated by the tangential vector 5. This ensures the normal vector i is always directed outwards from the domain.
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