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a b s t r a c t

We present a second order sharp interface finite volume method for the solution of the
three-dimensional elliptic equation r � ðbð~xÞruð~xÞÞ ¼ f ð~xÞ with variable coefficients on
Cartesian grids. In particular, we focus on interface problems with discontinuities in the
coefficient, the source term, the solution, and the fluxes across the interface. The method
uses standard piecewise trilinear finite elements for normal cells and a double piecewise
trilinear ansatz for the solution on cells intersected by the interface resulting always in a
compact 27-point stencil. Singularities associated with vanishing partial volumes of inter-
sected grid cells are removed by a two-term asymptotic approach. In contrast to the 2D
method presented by two of the authors in [M. Oevermann, R. Klein, A Cartesian grid finite
volume method for elliptic equations with variable coefficients and embedded interfaces,
Journal of Computational Physics 219 (2006) 749–769] we use a minimization technique
to determine the unknown coefficients of the double trilinear ansatz. This simplifies the
treatment of the different cut-cell types and avoids additional special operations for degen-
erated interface topologies. The resulting set of linear equations has been solved with a
BiCGSTAB solver preconditioned with an algebraic multigrid. In various testcases – includ-
ing large b-ratios and non-smooth interfaces – the method achieves second order of accu-
racy in the L1 and L2 norm.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

We seek solutions of the three-dimensional variable coefficient elliptic equation

r � ðbð~xÞruð~xÞÞ ¼ f ð~xÞ; ~x 2 X n C ð1Þ

defined in a domain X n C with an embedded interface C. For simplicity we assume X to be a simple cuboid. The embedded
interface C separates two disjoint sub-domains Xþ and X� with X ¼ ðXþ [X�Þ, see Fig. 1 for an illustration. Along the inter-
face we prescribe jump conditions for the solution

sutC ¼ uþð~xÞ � u�ð~xÞ ¼ gð~xCÞ ð2Þ

and for its gradient in the normal direction

sbuntC ¼ bþuþn � b�u�n ¼ hð~xCÞ; ð3Þ

with the notation un ¼ ðru �~nÞ. The unit normal vector ~n on C is defined to point from Xþ to X�.
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Elliptic equations of type (1) with variable and discontinuous coefficients and solution discontinuities often arise as a
component in modelling physical problems with embedded boundaries. Examples include incompressible two-phase flow
with surface tension featuring jumps in pressure and pressure gradient across the interface, projection methods for zero
Mach-number premixed combustion with jumps in the dynamic pressure and pressure gradient across the flame front, heat
conduction between materials of different heat capacity and conductivity and interface diffusion processes. In the literature
one can find a vast number of different approaches for the numerical solution of this type of problem. However, we limit our
discussion here to methods on grids which are not aligned with the interface. These methods have the advantage that they
do not need any re-meshing if the interface moves.

In Peskin’s immersed boundary method [31], singular forces arising from discontinuous coefficients and jump conditions
are treated as delta functions. Using discretised discrete delta functions, the discontinuity is spread over several grid cells
making the method first order accurate. The method has been used for many problems in mathematical biology and fluid
mechanics. Cortez and Minion [3] considerably improved Peskin’s method by improving its accuracy through higher order
procedures for representing boundary forces. Recent work by Tornberg and Engquist [38,39,5] generalizes the immersed
boundary approach and allows for high order approximations with minimal distribution of discontinuities or singular source
terms over the computational grid.

Mayo [25,26] presented a second order accurate method for Poisson’s equation and the biharmonic equation on irregular
domains using an integral equation formulation. The resulting Fredholm integral equations of the second kind are solved
with a fast Poisson solver on a rectangular region. Although the method captures solution discontinuities at the embedded
interface, continuous derivatives have been assumed to evaluate the discrete Laplacian. The method can easily be extended
to fourth order accuracy.

The immersed interface method [16–18,20] is a second order finite difference method on Cartesian grids for second order
elliptic and parabolic equations with variable coefficients. Discontinuities in the solution and the normal gradient at the
interface are explicitly incorporated into the finite difference stencil. Second order has been achieved by including additional
points near the interface into the standard 5-point stencil leading to a non-standard six-point stencil in 2D. The resulting
linear equation system is sparse but not symmetric or positive definite. Based on the immersed interface method Li and
Ito [19] present a second order finite difference method which satisfies the sign property on the matrix coefficients which
guarantees the discrete maximum principle. The resulting linear system of equations is non-symmetric but diagonally dom-
inant and its symmetric part is negative definite. The ideas presented in [19] have been extended to 3D in [4].

A first order finite difference method on Cartesian grids was presented by Liu et al. [22]. Interface jump conditions are
explicitly incorporated into the finite difference stencil as in the immersed interface method. Applying a one-dimensional
approach in each spatial direction by implicitly smearing out the gradient jump condition, standard stencils (5-point in
2D, 9-point in 3D) for the discrete Laplacian are achieved leading to a symmetric positive definite matrix for the Poisson
equation. The method shows first order accuracy for the solution u in the L1-norm for constant coefficients b�. A conver-
gence proof of the method has been provided in [23] based on the weak formulation of the problem. Due to its simplicity
and robustness the methods has been used in many engineering and scientific problems. The method has been indepen-
dently developed and applied to incompressible two-phase flow in [29].

A fourth order accurate finite difference method for elliptic problems with complex boundaries has been developed by
Gibou and Fedkiw in [7]. By high order extrapolation of the solution outside the domain they were able to apply high order
finite difference formulas at and near the interface. Similar ideas have been used in a series of papers by Wei and coworkers
[44,43,42] for elliptic problems with embedded interfaces. They developed finite difference methods of up to sixth order in
3D for smooth interfaces and up to second order for complex interfaces with sharp edges, wedges, and tips. Their methods
can be viewed as a higher-order generalization of the immersed interface method. Solutions on both sides of the interface are
smoothly extended beyond the interface allowing the application of standard high order finite difference formulas.

One of the first methods to model discontinuities in the finite element framework without aligning the grid with the
interface has been presented in [27,1]. In the so-called extended finite element method the original finite element space
is enriched by additional basis functions introducing new unknowns to the problems. The choice of additional enrichment
functions depends on the type of discontinuity, e.g. step functions for solution discontinuities or distance functions for kinks

Fig. 1. Domain X with sub-domains Xþ , X� , and embedded interface C.
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