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Abstract

Accurate simulation of plasmas often requires a solution of the kinetic equation, either directly by solving the Boltz-

mann equation (BE) or indirectly by means of �particle� simulations. However, kinetic simulations are still too comput-

ationally intensive for many large scale 3D simulations. In this paper we examine the matching between a kinetic

simulation and fluid models which we use in conjunction to form a �hybrid� plasma model of the breakdown process.

The kinetic model is tested for convergence with respect to mesh size Dx and time-step Dt. We then implement fluid

models in an attempt to reproduce the results of the kinetic model. To do this it is necessary to have a fluid model which

provides accurate simulations with a wide range of Dx and Dt. We accomplish this by means of a propagator (or

Green�s function) approach. The propagator method reduces to a finite difference scheme at small Dx,Dt and gives cor-

rect results across a wide range of parameters. For intermediate Dx,Dt it is necessary to take considerable care to derive

the correct propagator. We apply the propagator method to two fluid models; one uses parameters which are functions

of the electric field, and the other one uses parameters which are functions of the mean kinetic energy (this version also

explicitly conserves energy locally). The details of the fluid models employed make a profound difference to the predic-

tion of the breakdown.
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1. Introduction

The purpose of this paper is to examine the effectiveness of numerical techniques for the simulation of

electrical breakdown of a gas. Breakdown is in some regards more difficult to simulate than other aspects of

plasma behavior. During the initial phases of breakdown the electron density is expected to grow exponen-

tially in time (and sometimes in space). Modest differences in the predicted ionization rate [1,2] can lead to
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very large differences in density in this phase. Alternatively, near the threshold for the onset of breakdown

there is a sensitive region where we may predict growth or decay in the density, and only small changes in

parameters or models are needed to make the difference between one or the other.

The most accurate simulation of breakdown calls for a kinetic treatment, such as the solution of the

Boltzmann equation (BE) for the charged particle distribution function, or the numerical simulation of mo-
tions of charged particles. There are numerous plasma simulations using kinetic treatments such as [3–8].

However, kinetic simulation describes the plasma in great detail and is very computationally intensive in

practical situations so it is desirable to have a fluid equation for the charged particle density which approx-

imates the behavior predicted by the BE. Fluid simulations have been abundantly described; [17–21]. Such

simulation is frequently attempted using a variety of �hybrid� codes [9]. In a hybrid code, detailed calcula-

tions at the level of the BE are done to calibrate a fluid calculation (providing values for quantities such as

the diffusion coefficient D, the mobility l, the ionization rate S, and so on).

A key parameter in the fluid model employed here is the fraction, a, of the energy which is put into ion-
ization, as opposed to excitation or other inelastic processes (or radiation losses). In effect, the solution of

the BE provides the local value of a, as a function of the other variables. a can vary significantly, and this

variation is largely what provides the range of possible final densities.

Any model which conserves energy, even approximately, and which uses the correct a (which may mean

using an approach in which a is never explicitly employed, but which nevertheless results in the right frac-

tion of the energy being put into ionization) will give roughly the right amount of electrons. This is espe-

cially true in a homogeneous plasma. Inert gases (Xe, Ne, Ar, etc.) should have a very high a which makes

modeling them more straightforward.
We have examined the capability of fluid models to reproduce the behavior of the BE, in order to assess

how accurate a fluid model of breakdown can be made. One issue of some concern was the value of the Dx
and the Dt which can be used. The BE solution requires very small values of Dx and Dt, because the natural
scales of the problem are rather short. It is of some concern whether the fluid equation must be restricted to

the same range of Dx and Dt. We thus employed a �propagator� (Green�s function) method [38–41] to solve

the fluid equations (similar to our BE solution technique) which works well for a wide range of Dx and Dt.
The propagator method is of some interest in itself. It provides a simple scheme for solving a discretized

fluid equation, which can be reduced to a finite difference scheme for small Dx,Dt but which works equally
well for a wide range of Dx,Dt since the propagator does not necessarily obey the Courant limit. One ver-

sion of the scheme has been implemented in a form which explicitly and locally conserves particles and en-

ergy. The finite difference forms of the fluid equations involve evaluating derivatives; in this problem those

derivatives are not necessarily well described by finite differences because the gradients are very steep

indeed. The propagator does not require the calculation of derivatives and is easier to implement than

the finite difference scheme.

Eastwood [39,40] has presented a rather general treatment of methods of characteristics, including

Lagrangian schemes, applied to a one dimensional fluid flow. Eastwood distinguished a number of different
ways of handling the problem, and although our methods do not entirely fall within his framework, there

are some aspects of his categorization which are illuminating. The most pertinent distinction between

schemes, from our point of view, reflects whether the scheme (a) takes an initial density defined on mesh

points and propagates it forward in time, along the characteristics, or (b) if the scheme focuses on a final

cell and looks back along the trajectory to find the initial density. In case (b), when looking back along the

trajectory one is (in general) forced to interpolate between mesh points to find the �old� density on the tra-

jectory/characteristic. Case (a) requires that density from an �old� mesh point be propagated forward and

then shared between mesh points. Eastwood prefers case (b) for reasons of accuracy in the problem he
was studying. We find compelling reasons to use case (a) which we shall point out shortly. The review paper

by Staniforth and Cote [44] considers Eastwood�s work, but their discussion is limited to case (b), as their

Figs. 1 and 2 show. These figures define what we mean by �looking back along a trajectory� very clearly. The
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