
High order accurate solution of the incompressible
Navier–Stokes equations
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Abstract

High order methods are of great interest in the study of turbulent flows in complex geometries by means of direct

simulation. With this goal in mind, the incompressible Navier–Stokes equations are discretized in space by a compact

fourth order finite difference method on a staggered grid. The equations are integrated in time by a second order semi-

implicit method. Stable boundary conditions are implemented and the grid is allowed to be curvilinear in two space

dimensions. The method is extended to three dimensions by a Fourier expansion. In every time step, a system of linear

equations is solved for the velocity and the pressure by an outer and an inner iteration with preconditioning. The con-

vergence properties of the iterative method are analyzed. The order of accuracy of the method is demonstrated in

numerical experiments. The method is used to compute the flow in a channel, the driven cavity and a constricted

channel.
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1. Introduction

Spectral and pseudospectral methods are accurate methods for direct numerical simulation of turbulent

flow governed by the incompressible Navier–Stokes equations. The disadvantage with these methods is that

they are restricted to simple geometries such as channels. Finite difference methods of high order do

not have this restriction and are almost as accurate as a spectral method. In this paper we develop such
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a method of fourth order accuracy in space and second order in time for two-dimensional problems (2D)

and indicate how the method is extended to three dimensions (3D). The level of the discretization error is

the important issue, not so much the order of accuracy, but a certain error level is more easily obtained with

a high order method. High order is the means to reach the goal: a small discretization error in the solution.

The same accuracy is achieved with fewer grid points or the solution has better accuracy on the same grid
compared to a second order method. The solution in curvilinear body-fitted coordinates is obtained by a

mapping of the equations to a rectangular grid where the derivatives are approximated. The solution is

computed in the primitive variables defined on a staggered grid with local velocity components to avoid

spurious oscillations. High order accuracy in the spatial approximations is also necessary for large eddy

simulation (LES) in order not to interfere with the subgrid model with terms proportional to the square

of the grid size [17]. It is not necessary for LES to have high order also in the time discretization. The error

caused by the time stepping can be controlled independently by changing the length of the time step.

Let u and v be the velocity components in the x- and y-direction, respectively, p the pressure, and m the
kinematic viscosity. The Reynolds number is defined by Re = ub‘/m for some characteristic velocity ub and

length scale ‘. By defining w = (uv)T, differentiation with respect to an independent variable, such as time t,

by a subscript, and the nonlinear and linear terms

NðwÞ ¼ ðw � rÞw; Lðw; pÞ ¼ rp � Re�1Dw;

the Navier–Stokes equations in two dimensions are

wt þNðwÞ þLðw; pÞ ¼ 0; ð1Þ

r � w ¼ 0: ð2Þ
The space discretization ofN and L in (1) is in compact form [27] and the equations are integrated in time

by a semi-implicit method. The approximations of the first and second derivatives are defined implicitly and

they satisfy systems of linear equations with a tridiagonal system matrix. The number of terms in the com-

putational domain is reduced by orthogonal grids in the physical domain. The nonlinear convection term

N is extrapolated from the previous time steps. The linear part of the discretized momentum equations L
and the discretized divergence equation (2) are solved simultaneously at the new time level. A system of

linear equations has to be solved for w and p in every time step. The solution is computed by an iterative
method until convergence is reached. The method is shown to be of fourth order in space and of second

order in time in w and p in numerical experiments. The method is analyzed with respect to boundary con-

ditions and stability in [20,21,26,35]. Other examples of the accuracy and performance of the method are

found in [4,6].

The difference scheme approximates the Navier–Stokes equations in its original form including the con-

tinuity equation and well-posed boundary conditions. In this way the usual difficulty of forming boundary

conditions for the pressure equation is avoided [3,42]. The solution procedure for the complete algebraic

system of equations uses a factorization that requires the solution of a subsystem that corresponds to a dis-
crete elliptic equation of Poisson type. However, the boundary conditions for this equation are automati-

cally obtained as part of the factorization.

There are stability constraints on the time step Dt due to the semi-implicit time integration. Other con-

straints on Dt are introduced by accuracy requirements and the convergence of the iterative solvers. It is

shown in [9] that an implicit method is faster than a semi-implicit method for fully developed turbulent flow

in a boundary layer but the CFL-number for good accuracy is rather low, 0.5–1. In other flow regimes, such

as transitional flow, a much smaller time step is necessary for accuracy [15], thus reducing the time savings

with an implicit method.
The method is extended to three space dimensions aiming at direct numerical simulation of turbulent

flow. The solution is assumed to be periodic in the spanwise direction and the variables are expanded in
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