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Abstract

The method of calculating the system of gas dynamics equations coupled with the chemical reaction equation is con-
sidered. The flow parameters are updated in whole without splitting the system into a hydrodynamical part and an
ODE part. The numerical algorithm is based on the Godunov’s scheme on deforming meshes with some modification
to increase the scheme-order in time and space. The variational approach is applied to generate the moving adaptive
mesh. At every time step the functional of smoothness, written on the graph of the control function, is minimized.
The grid-lines are condensed in the vicinity of the main solution singularities, e.g., precursor shock, fire zones, intensive
transverse shocks, and slip lines, which allows resolving a fine structure of the reaction domain. The numerical examples
relating to the Chapman—Jouguet detonation and unstable overdriven detonation are considered in both one and two
space dimensions.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Modeling detonation wave motion in gases has started in 1940s, see, e.g. [26,59], based on the theory of
the steady one-dimensional detonation, referred to as the Zeldovich—Neuman—Doering (ZND) model. The
early computations were rather rough giving only a qualitative estimate to the solution. The main difficulty
of the numerical simulation is due to the different scales of the flow domain and chemical reaction zone.
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Thus, the simulation for the real objects requires using more powerful computers or more sophisticated
numerical algorithms.

Developing the numerical algorithms is executed in several ways. In the first group the burning zone is not
resolved by the grid points. Instead in [16] the chemical heat release is put into the Riemann problem. This
idea is used in [28] as well. In [15], the chemical reaction term is present only to the energy equation, the Kinet-
ics equation is omitted and the Riemann problem is formulated for the non-reactive gas. Although the det-
onation wave speed is obtained rather inaccurately, the calculations of the real industrial objects with
complex geometry are found satisfactory. In the second group of the algorithms, the burning zone is resolved
by putting there several grid points in the normal direction. This requires to use very fine quasiuniform
meshes. In the most of these algorithms one applies the fractional step approach (also referred to as the
Strang splitting schemes). At each time step, first, the system of conservation laws is treated and then the
ODE to the kinetics equation is solved, e.g., see [8,17,30,44,45,54]. Although the convergence of the frac-
tional step method was justified theoretically for scalar conservation laws with source terms [19,52,53], the
application for this approach for hyperbolic system with stiff source terms generally produces the non-phys-
ical solution, e.g., see [17]. Another way is to treat the system of conservation laws coupled with the reactive
equation as a whole, i.e., using the unsplit schemes. In this approach the heat release term in the right part of
the system is treated as a source term. In [7], the generalized Riemann problem is introduced for the reactive
equations to provide the second-order approximation in time. In [20], the detonation process is simulated on
the Lagrangian mesh. Space-time paths are introduced in [43] on which the equations are reduced to the
canonical form about the “new” Riemann invariants. All the above methods are of Godunov-type (except
[16], where the random choice method is used), i.e., include solution of the Riemann problem that allows
obtaining the narrow wave front rather precisely. In contrast to it, the random projection method is used
in [6] where the Riemann problem is omitted from the consideration. However, justification of such a sim-
plification is still under the question. Some other non-Godunov-type algorithms can be found in [42].

In this work, we present an unsplit scheme for calculating the reactive flow equations on the moving
meshes. For this we utilize the idea of the Godunov’s scheme on the deforming meshes (see the monographs
[1,32]), when the conservation laws are written in the integral form using the so-called generalized formu-
lation in R* space (x, y,7) (¢ is time). This allows updating the flow parameters directly on the moving cur-
vilinear mesh without using interpolation. One implementation of the first-order Godunov’s method on the
moving mesh with front tracking was performed in [27]. In some sense such a kind of schemes can be re-
ferred to as an ALE approach, cf. [29].

In [2], a modification of the Godunov’s scheme of the second-order accuracy in time and space was sug-
gested, because the first-order original scheme in [32] does not provide proper grid-nodes adaptation to the
solution singularities. The second order in space is achieved by interpolating the flow parameters inside
the cells, and in time by using the Runge-Kutta method with a predictor—corrector procedure. To obtain
the fluxes value at the cell sides the Riemann problem is solved. The kinetics equation is treated similarly,
namely we write it in the integral form and approximate it in the hexahedron cell in space (x,y,?).

The variational approach is employed to generate the moving mesh. The variational approach to gen-
erate two-dimensional meshes was suggested in the form of quasi-conformal mapping in [31]. In [56], the
variational principles for constructing the adaptive moving grids in the gas dynamics problems were formu-
lated. They introduced the measure (or functional) of mesh deviation from the Lagrange coordinates, mea-
sure of mesh deformation and mesh concentration. In [10], the functional of smoothness was applied, to
which the Euler-Lagrange equations coincide with the system used in [58]. In [40], the problem of minimiz-
ing the functional of smoothness (also referred to as the harmonic or Dirichlet’s functional) written for a
surface of the control/monitor function was formulated to construct an adaptive-harmonic mesh. Other
forms of the monitor functions for the harmonic functional have been considered in [11,21,51]. In contin-
uous approach the harmonic mapping, subject to some known conditions, is a homeomorphism. However,
its discrete realization, based on solving the Euler-Lagrange equations, suffers from mesh tangling in the
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