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Abstract

A numerical algorithm for solving mantle convection problems with strongly variable viscosity is presented. Equa-

tions for conservation of mass and momentum for highly viscous and incompressible fluids are solved iteratively by a

multigrid method in combination with pseudo-compressibility and local time stepping techniques. This algorithm is

suitable for large-scale three-dimensional numerical simulations, because (i) memory storage for any additional matrix

is not required and (ii) vectorization and parallelization are straightforward. The present algorithm has been incorpo-

rated into a mantle convection simulation program based on the finite-volume discretization in a three-dimensional

rectangular domain. Benchmark comparisons with previous two- and three-dimensional calculations including the tem-

perature- and/or depth-dependent viscosity revealed that accurate results are successfully reproduced even for the cases

with viscosity variations of several orders of magnitude. The robustness of the numerical method against viscosity

variation can be significantly improved by increasing the pre- and post-smoothing calculations during the multigrid

operations, and the convergence can be achieved for the global viscosity variations up to 1010.
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1. Introduction

The Earth�s mantle is the spherical shell composed of silicate rocks and it ranges from approximately

5–50 to 2900 km depth. Although the mantle behaves like an elastic solid on short time scales, it acts
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like a highly viscous fluid on long time scales. The mantle also acts as a heat engine and it is in a con-

vective motion in order to transport the heat from the hot interior to the cool surface [1,2]. The mantle

convection is observed as the motion of tectonic plates at the Earth�s surface. The motion of surface

plates, in turn, drives seismicity, volcanism and mountain building at the plate margins. Thus, the man-

tle convection is the origin of the geological and geophysical phenomena observed at the Earth�s sur-
face. A major tool for understanding the mantle convection is numerical analysis. It has been playing

an important role in the study of mantle convection, since a numerical simulation of mantle convection

first arose [3,4].

Mantle convection requires different numerical techniques from those for ordinary fluids such as water

because of its rheological properties. The viscosity of mantle materials is estimated as high as 1022 Pa s [1,5].

Since the mantle materials is highly viscous, both the nonlinear and time-derivative terms of velocity can be

ignored in the equation of motion. This implies that the flow in the mantle is described by a steady-state

Stokes flow balancing among the buoyancy force, pressure gradient and viscous resistance. Taken together
with the assumption of incompressibility, one needs to solve elliptic differential equations for velocity and

pressure at every timestep. In addition, the viscosity of mantle material varies by several orders of magni-

tude depending on temperature, pressure, and stress [6,7]. The strong variation in viscosity makes numerical

techniques for ordinary isoviscous fluids, such as the spectral method [8,9], unfit for the numerical modeling

of mantle convection. In order to get deep insights into the mantle convection, it is very important to

develop efficient numerical techniques that can deal with the steady-state flow of highly viscous and incom-

pressible fluids with a strongly variable viscosity.

The efficiency of numerical simulations of mantle convection strongly relies on numerical methods
used for solving elliptic differential equations. One of the most efficient methods is the multigrid iteration

[10]. The multigrid concept has been successfully applied to a wide range of problems, including calcu-

lations of incompressible fluid flow [11–13]. During the last two decades, various numerical models of

mantle convection have been developed where the multigrid method is utilized. There are two strategies

to apply the multigrid method to this problem, depending on how the steady-state Stokes equations are

solved.

The first strategy solves the Stokes equations by splitting into the separate equations for velocities and

pressure. The discretized equations for velocity components (or their proxy) are solved by the multigrid
method, while the pressure is eliminated or solved separately. Parmentier et al. [14] developed convection

models of isoviscous fluid in three-dimensional Cartesian geometry. By using a streamfunction formula-

tion, the Stokes equations are reduced to a pair of Poisson equations which are solved by multigrid iter-

ations. Baumgardner [15] developed a convection model of isoviscous fluid in a three-dimensional

spherical geometry. He solved the elliptic equations for velocity components using a multigrid method,

while the pressure fields are prescribed by the equation of state. Baumgardner and his colleagues [16–

18] further developed convection models for fluids with variable viscosity in a three-dimensional spherical

geometry. The Stokes equations are solved separately for velocity and pressure by so-called Uzawa iter-
ative scheme [19]. The iteration for velocity is carried out by a multigrid method, while a conjugate gra-

dient scheme is used for pressure iteration. This approach was also employed by Moresi and his

colleagues [20,21] for convection problems with strongly variable viscosity in two- and three-dimensional

Cartesian geometry.

The second strategy, on the other hand, solves the Stokes equations for velocity and pressure as a

whole by the multigrid technique. The key issue of this strategy is a choice of the smoothing algorithm

which reduces the errors of solution on a particular grid. Several methods for solving incompressible fluid

flows have been utilized as a smoothing algorithm. Trompert and Hansen [22,23] and Albers [24] devel-
oped numerical methods for convection problems with variable viscosity in three-dimensional Cartesian

geometry. The Stokes equations are solved by a multigrid method where the SIMPLER algorithm [25] is

employed as a smoothing operation. Auth and Harder [26] used the symmetric coupled Gauss–Seidel
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