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a  b  s  t  r  a  c  t

The  first  significant  digit  patterns  arising  from  a mixture  of  uniform  distributions  with
a  random  upper  bound  are  revisited.  A closed-form  formula  for its  first significant  digit
distribution  (FSD)  is  obtained.  The  one-parameter  model  of  Rodriguez  is  recovered  for
an extended  truncated  Pareto  mixing  distribution.  Considering  additionally  the truncated
Erlang,  gamma  and  Burr mixing  distributions,  and  the  generalized  Benford  law,  for  which
another probabilistic  derivation  is offered,  we  study  the fitting  capabilities  of  the  FSD’s  for
various  Benford  like  data  sets  from  scientific  research.  Based  on the  results,  we propose  the
general  use  of a fine  structure  index  for Benford’s  law  in  case  the  data  is  well  fitted  by the
truncated  Erlang  member  of the  uniform  random  upper  bound  family  of  FSD’s.
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1. Introduction

Motivated by the first significant digit analysis of some biological data sets Cáceres, García, Martínez Ortiz, and Dominguez
(2008) consider the following simulation model to generate a first significant digit distribution (FSD) and call it random upper
bound model (RUBM):

“It seems plausible to explore whether the first digit law is a consequence of the finite nature of real data sets. The RUBM
assumes that natural numbers span from 1 till an upper bound (for example 250). We  call the number 250 “upper bound”.
For the case of uniform distribution of probability, number 1 will appear with a probability of 111/250 = 0.44, number 2
appears with 61/250 = 0.244, etc. RUBM assumes that the upper bound changes randomly. For each upper bound a number
was randomly picked out and 10,000 simulations were performed for obtaining a frequency distribution histogram.”

While such a model is a priori quite interesting its definition is incomplete because it does not specify the distribution
according to which the upper bound changes randomly. Presumably, the authors mean “uniform distribution” but this notion
cannot be grasped without precise mathematical modelling. From their pictured histogram one sees that the simulation
comes very close or even coincides with the first digit law of Stigler (1945), which has been further discussed by Raimi
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(1976), Rodriguez (2004) and Lee, Cho, and Judge (2010). In particular, Rodriguez demonstrates how Benford’s, Stigler’s
and the uniform FSD’s can be embedded into a one-parameter extension by assuming a power law random behaviour for
the upper bound. Using a modified more natural finite support for the random upper bound, we  provide in Section 2 a
new simpler proof that the Cáceres et al. RUBM coincides with the Stigler-RUBM first digit distribution as the number of
simulations grows to infinity. In the context of statistical distributions, the random upper bound can be viewed as extended
truncated Pareto distributed with arbitrary real index, i.e. as “analytical continuation” of the truncated Pareto with positive
index. The obtained FSD is independent of the truncation point. In the special case of a positive Pareto index, we show that it
coincides with the FSD from a RUBM with Pareto distributed upper bound. This is shown within the context of the uniform
mixture model of Rodriguez (2004) with a general distribution of the random upper bound, called hereafter uniform random
upper bound (URUB) family of FSD’s.

Further specializations of the URUB family yield in Section 3 some new FSD’s of independent interest. The upper bound
mixing distribution is alternatively specified as a truncated version from below of the gamma, Erlang and Burr distributions
respectively. As their FSD fitting capabilities are compared with the generalized Benford (GB) law, some brief information
on it is included. In particular, based on the extended truncated Pareto distribution a new probabilistic derivation of the GB
law is given. A relationship with an exponential Benford (EB) law is also given.

Applications to real-world data from various scientific disciplines (including some scientometric data) are presented
in Section 4. Benford’s law, which concerns a special but specific aspect of information, is an analytical tool of study in
informetrics, a name coined by Nacke (1979) (see also Tague-Sutcliffe, 1992). Informetrics encompasses many subfields,
in particular scientometrics, bibliometrics and webometrics. At the beginning of the 21st century one has a bibliography
by Hood and Wilson (2001) and a review by Bar-Ilan (2008). Some books about informetrics include Egghe and Rousseau
(1990) and Egghe (2005). The first digit phenomenon is mentioned in Brookes and Griffiths (1978) and Brookes (1984).
Recent applications to scientometric data are due to Campanario and Coslado (2010) and Alves, Yanasse, and Soma (2014).
Parts of their data will be used to illustrate the impact of the new method within informetrics. Based on the entire data
analysis, we propose the use of a fine structure index for Benford’s law in case Benford like data is well fitted by a truncated
Erlang URUB FSD.

2. The uniform random upper bound family and the Stigler-RUBM FSD

Consider the uniform random upper bound (URUB) family of FSD’s (to the decimal base) introduced in Rodriguez (2004).
Given is a uniform random variable U[0, b) with upper bound uniquely written as b = m · 10k + c, m ∈ {1, 2, . . .,  9}, where m is
an integer and c ∈ [0, 10k). Conditional on the value of b the probability that a random number drawn from U[0, b) has a first
significant digit d ∈ {1, 2, . . .,  9} is determined by (Rodriguez (2004), Eq. (1))

P(d/b) = 10k(d)+1

9b
+ b − m · 10k

b
I(d),

I(d) =
{

1, d = m,

0, d /= m,

k(d) =
{

k, d < m,

k − 1, d = m.

(2.1)

The general URUB family is defined to be equal to the FSD associated to the mixture of uniform random variables U[0,
b), where the random upper bound b has a distribution F(b) with support S contained in the interval [1, ∞).  If the support
is bounded we assume for simplicity that it is of the form SN = [1, 10N) for some N ≥ 1 and in case it is unbounded we  set
S∞ = lim

N→∞
[1,  10N) = [1,  ∞).  Writing the support as disjoint union of intervals as SN =

⋃N−1
k=0 [10k, 10k+1) and using Eq. (2.1)

one shows similarly to Rodriguez (2004), Eqs. (2) and (3), that the defined mixture of uniform random variables with support
SN has FSD

PN(d)=
∫ 10N

1

P(d/b)dF(b) =
N∑

k=0

{∫ d·10k

10k

10k

9b dF(b) +
∫ (1+d)·10k

d·10k

(
10k

9b + b−d·10k

b

)
dF(b) +

∫ 10k+1

(1+d)·10k
10k+1

9b dF(b)

}
. (2.2)

We  show that (2.2) can be written in closed form in terms of the two finite series survival like functions

SF̄,N(x) =
N−1∑
k=0

F̄(x · 10k), F̄(x) = 1 − F(x),

SḠ,N(x) =
N−1∑
k=0

10k · Ḡ(x · 10k), Ḡ(x) =
∫ 10N

x

b−1dF(b)

. (2.3)

Proposition 2.1 (FSD of the URUB family). The first significant digit distribution of the URUB family with random upper bound
distribution F(b) supported on SN = [1, 10N) is determined by

PN(d) = 1
9 (SḠ,N(1) − 10 · SḠ,N(10)) + (SF̄,N(d) − d · SḠ,N(d)) − (SF̄,N(1 + d) − (1 + d) · SḠ,N(d)). (2.4)



Download English Version:

https://daneshyari.com/en/article/10358408

Download Persian Version:

https://daneshyari.com/article/10358408

Daneshyari.com

https://daneshyari.com/en/article/10358408
https://daneshyari.com/article/10358408
https://daneshyari.com

