
 Journal of
Visual Languages
 & ComputingJournal of Visual Languages and Computing

16 (2005) 231–244

A universal fast graphical user interface building
tool for arbitrary interpreters

L. Perea,b, M. Koniorczykc,�,1

aComputing Services Centre and Department of Informatics and General Technology, Faculty of Science,

University of Pécs, Pécs, H-7624 Pécs, Ifjúság útja 6. Hungary
bComputer and Automation Research Institute of the Hungarian Academy of Sciences (MTA SZTAKI),

Budapest, Hungary
cResearch Centre for Quantum Information, Slovak Academy of Sciences, Dubravská Cesta 9.

845 11 Bratislava, Slovakia

Received 12 January 2004; received in revised form 13 September 2004; accepted 20 September 2004

Abstract

We consider the issue of implementing graphical user interfaces (GUIs): we present an easy-

to-use and fast GUI building tool, specially designed to be used with interpreters. It supports a

variety of communication methods and interaction models, therefore being able to collaborate

with a huge diversity of interpreters in a natural way, in POSIX compliant (or similar)

environment. Thus it enables the programmer to easily create a GUI, no matter what kind of

language or model the actual interpreter implements. Event-driven programs in UNIX shells

and graphical user interfaces in a data oriented language are presented as example

applications.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: User interface; GUI; Interpreters; Shells; Event-driven programming

ARTICLE IN PRESS

www.elsevier.com/locate/jvlc

1045-926X/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2004.09.002

�Corresponding author. Tel.: +42190 261 0470; fax: +42125 477 6085.

E-mail address: kmatyas@szfki.hu (M. Koniorczyk).
1On leave from Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences,

Budapest.

www.elsevier.com/locate/jvlc

1. Introduction

Many of the formal languages can be implemented on a POSIX [1] compliant or at
least similar system by creating an interpreter software. A large variety of
problems—from system administration to database management—can easily be
solved with the aid of interpreters, such as shell programs like the Bourne Again
Shell (BASH), AWK, Perl, etc. When running an interpreter, a variety of command-
line based external utilities can be invoked, including e.g. self-made programs,
special utilities for graphics or device control, or SQL clients. Though it is sometimes
claimed that the use of a command-line is out-of-date and should be replaced by
entirely visual approaches, it has certain advantages in many cases. It would be
desirable to extend the possible choices for a development method and its
implementation where visual programming and GUI interfaces can naturally co-
exist with the ‘‘old fashioned’’ command-line interpreters or scripting languages,
extending the capabilities of each other.
The tool to be described here is of this kind: it enables the developer to easily create

GUIs based on his current expertise and knowledge in a certain interpreted language.
While in the case of compiled languages, there is a fine selection of programming

libraries (such as forms, Qt, GTK+, etc.) to help programmers in creating GUIs,
there are rather few of such tools for interpreters.
Shell scripts and command line utilities, for instance, constitute the powerful

armament of a typical UNIX user. Due to the standard and flexible nature of this
user attitude, it is applicable on many (not natively UNIX) platforms. There have
been endeavors to create graphical user interfaces for command line utilities or shell
scripts. This progress dates back to 1991: Hesketh [2] described a button system,
Perly, realizing to some extent the graphical means of running a Perl or shell script.
His main concern was to provide on-screen graphical buttons connected to UNIX
command scripts. When a button was pressed, the associated command script was
executed. Teuben [3] suggested a method where the GUI was described in the
comment lines of the shell script. Sorzano et al. [4] implemented a way of creating
graphical user interfaces to UNIX commands.
An example of a more universal utility, providing dialog boxes especially for shell

scripts is the dialog utility [5] and its affiliates: kdialog and gdialog. A typical
feature of these is that the main program is written in the actual shell, while the
utilities creating the GUI are called as external programs. They receive the
description of the desired interface from command-line switches and write user input
to their standard output. These are suitable for simple intercourses (e.g. a single
question), but their application may become laborious in more complex situations.
They lack the opportunity of defining actions for the widgets, thus the only
interaction model feasible in this framework is a sequence of questions and answers.
As a consequence, they are unsuitable for developing more sophisticated action-
driven programs, which is in itself against the nature of shells. They have, however, a
remarkable advantage: the method of the GUI design is independent of the shell
actually used. The same syntax is used for BASH, C shell, etc. Therefore there is no
need to learn a new GUI description language for each shell.

ARTICLE IN PRESS

L. Pere, M. Koniorczyk / Journal of Visual Languages and Computing 16 (2005) 231–244232

Download	English	Version:

https://daneshyari.com/en/article/10358426

Download	Persian	Version:

https://daneshyari.com/article/10358426

Daneshyari.com

https://daneshyari.com/en/article/10358426
https://daneshyari.com/article/10358426
https://daneshyari.com/

