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a b s t r a c t

An efficient parallel implementation of a nonparaxial beam propagation method for the
numerical study of the nonlinear Helmholtz equation is presented. Our solution focuses
on minimizing communication and computational demands of the method which are
dependent on a nonparaxiality parameter. Performance tests carried out on different types
of parallel systems behave according theoretical predictions and show that our proposal
exhibits a better behavior than those solutions based on the use of conventional parallel
fast Fourier transform implementations. The application of our design is illustrated in a
particularly demanding scenario: the study of dark solitons at interfaces separating two
defocusing Kerr media, where it is shown to play a key role.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear optics is one of many scientific fields that have experienced a great development due to the progress in
computational science. Numerics are essential to provide information in those nonlinear scenarios where analytical
solutions do not exist or are difficult to obtain. Such is the case found in the analysis of the nonlinear propagation of optical
wave-packets localized either in space or time, i.e. continuous-wave (CW) beams [1] and optical pulses in fibers [2],
respectively, where the nonlinear Schrödinger (NLS) equation has been widely used. The NLS equation belongs to a class
of partial differential equations [3] whose full numerical integration can be performed using the split-step Fourier (SSF)
method [4]. Nevertheless, the slowly varying envelope approximation (SVEA) assumed in the derivation of the NLS equation
is not valid when addressing the nonlinear propagation of optical signals in many different scenarios.

The SVEA, when applied to CW beams, is also known as the paraxial approximation. Nevertheless, nonparaxiality can eas-
ily become a misunderstood term because it applies not only to the evolution of ultra-narrow high-intense beams, but also to
the propagation of broad beams of relatively low intensity at large angles in relation to a longitudinal axis. The first source of
nonparaxiality was questioned by Akhmediev and Soto-Crespo [5], who unveiled the limitations of the scalar NLS equation in
scenarios of strong focusing. Full vectorial analysis were thus proposed to address the evolution of both bright [6] and dark
[7] nonparaxial solitons in nonlinear media. Unlike this, the second type of nonparaxiality can be described by means of a
scalar field equation, such as the nonlinear Helmholtz (NLH) equation [8,9]. Exact analytical solutions of the NLH equation
have been provided in the framework of the Helmholtz theory [9–11] and substantial differences in relation to previous

http://dx.doi.org/10.1016/j.parco.2014.06.003
0167-8191/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: julsan@tel.uva.es (J. Sánchez-Curto).

Parallel Computing 40 (2014) 394–407

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate /parco

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2014.06.003&domain=pdf
http://dx.doi.org/10.1016/j.parco.2014.06.003
mailto:julsan@tel.uva.es
http://dx.doi.org/10.1016/j.parco.2014.06.003
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


paraxial analyses [9–15] also manifest in those nonlinear scenarios where it is essential to preserve the angular character of
the problem. The study of bright soliton collisions [16] or the interaction of Kerr solitons with nonlinear interfaces [17–19]
represent two such examples.

Focusing our interest on the NLH, numerical methods have also been developed to investigate nonlinear propagation
phenomena associated to this equation where backscattered waves appear accompanying the propagation of a forward
propagating beam. The elimination of backward waves has concentrated much of the attention of numerical methods such
as the two-way arbitrary boundary conditions model [20,21] or the nonparaxial beam propagation method (NBPM) [22]. The
validity of the former has been demonstrated in the arrest of soliton collapse for the (2 + 1)-D NLH equation or in the for-
mation of nonparaxial solitons for the (1 + 1)-D NLH equation [23]. The latter, has been essential in the development of
the Helmholtz theory [9,11–15] and its efficient parallelization constitutes the main object of this paper.

The NBPM [22] is obtained by approximating the evolution equation for the field envelope of a solution of the NLH equa-
tion with a difference–differential model. While the longitudinal evolution is computed according to a finite difference
scheme, the term associated with linear diffraction is evaluated in the spectral domain thus demanding the application of
successive forward and backward fast Fourier transforms (FFT) [24,25] which constitute the computational core of the
NBPM. As regards parallel computing, the NBPM is an excellent candidate to be parallelized. The core of the implementation
is the paradigm of a Single Instruction Multiple Data (SIMD) problem [26,27] where massive additions and multiplications
associated to the computation of the FFTs must be applied to a regular data set. Therefore, the use of parallel FFT implemen-
tations based on either the binary exchange method [28,29] or the transpose method [30–32] can be considered as a
straightforward approach for the parallelization of the NBPM. Such is the case, for instance, of the recent Fast Fourier Trans-
form in the West (FFTW) [33] whose parallel implementation has already been used in the core of the SSF for studying cou-
pled NLS equations [34] or the Korteweg–de-Vries (KdV) equation [35]. Nevertheless, as we show in this work, much more
efficient schemes are possible for the parallelization of the NBPM whenever one exploits the specific features of the numer-
ical method in order to minimize both communication bandwidth and computational costs in relation to state-of-the art
routines. Such is the case of the parallel implementation of the NBPM we present in this work, denoted as PNBPM. Perfor-
mance results carried out on several parallel systems confirm that the PNBPM reduces the overall execution time involved in
the NBPM when compared with the use of state-of-the-art routines in the core of the NBPM.

This paper is structured as follows. In Section 2, we briefly review the NBPM and highlight those issues which are essen-
tial for the parallel implementation of the method. Different approaches proposed as candidates to constitute the parallel
implementation of the NBPM core are discussed in Section 3. Section 4 presents the main contribution of this work, which
is the PNBPM. Both computational and communication costs are separately analyzed and demonstrated to depend on the
nonparaxiality parameter present in the NLH. Section 5 is devoted to show the results of performance tests carried out on
different parallel systems when our approach is compared to different alternatives. Section 6 illustrates the essential role
played by the PNBPM proposed in this paper in the study of a problem whose numerical solution is particularly involved,
namely the evolution of black Helmholtz solitons at the interface separating two defocusing Kerr media. Finally, in Section 7
we summarize the conclusions of the work.

2. Nonparaxial beam propagation method

The NBPM permits the numerical integration of the evolution equation
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used in the analyses of Helmholtz solitons in Kerr focusing media [9–11]. u represents the complex envelope of a forward
propagating electric field Eðx; zÞ ¼ ðn0=n2kLDÞ1=2uðx; zÞexpðikzÞ where n0 and n2 account for the linear and nonlinear refractive
indexes of the Kerr-type medium nðEÞ ¼ n0 þ n2jEj2, respectively. In Eq. (1) uðn; fÞ is expressed in terms of the normalized
transverse and longitudinal coordinates n ¼ 21=2x=w0 and f ¼ z=LD, respectively. w0 is a transverse scale parameter, equal
to the waist of a reference Gaussian beam of diffraction length LD ¼ kw2

0=2. j ¼ 1=ðkw0Þ2 is a nonparaxiality parameter, relat-
ing beam width and wavelength k ¼ 2p=k. Eq. (1) is directly obtained from the NLH equation with no approximation [9] and,
thus, the results obtained from both equations are fully equivalent. Both the model equation shown in Eq. (1) and the NPBM
algorithm have been extended to address the propagation of dark solitons in defocusing Kerr media, bistable solitons in
cubic-quintic nonlinear materials, or inhomogeneous nonlinear media with planar boundaries [12,15,17–19].

A comparison of Eq. (1) with the NLS equation
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reveals that the term associated to the nonparaxial parameter is missing in the NLS equation. Such omission accounts for the
paraxial approximation (or, equivalently, the SVEA) and discards the rapid evolution of the complex field envelope along the
f coordinate. Besides its physical relevance in the context of Helmholtz solitons, j is also going to play a fundamental role in
the parallelization of the NBPM, as it will be shown in Section 4.
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