
Short Paper

Efficiency of hybrid index structures—Theoretical analysis
and a practical application$

Richard Göbel, Carsten Kropf n, Sven Müller
Institute of Information Systems, Hof University, Alfons-Goppel-Platz 1, D-95028 Hof, Germany

a r t i c l e i n f o

Article history:
Received 22 August 2014
Received in revised form
19 September 2014
Accepted 20 September 2014
Available online 28 September 2014

Keywords:
Hybrid index structures
Theoretical analysis
Experimental validation

a b s t r a c t

Hybrid index structures support access to heterogeneous data types in multiple columns.
Several experiments confirm the improved efficiency of these hybrid access structures.
Yet, very little is known about the worst case time and space complexity of them. This
paper aims to close this gap by introducing a theoretical framework supporting the
analysis of hybrid index structures. This framework then is used to derive the constraints
for an access structure which is both time and space efficient. An access structure based
on a Bþ-Tree augmented with bit lists representing sets of terms from texts is the
outcome of the analysis which is then validated experimentally together with a hybrid
R-Tree variant to show a logarithmic search time complexity.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Modern database systems often manage data of multi-
media types. Texts, images or video data are stored inside
those database systems. Some approaches with specialised
database systems which allow storing and retrieving those
data fast exist. Relational database management systems
are still the most used technique, especially as data stores
in enterprises, although NoSQL databases are also present.
Mixing up different storage systems does not help in
retrieving the data fast, because of having to search
multiple systems and generating a finally intersected
result set at the end. This implies, on one hand, a large
overhead of temporarily allocated memory and, on the
other hand, a large overhead of time as the distinct search
results must be combined to a final result set.

Most existing hybrid access structures focus on the
efficient storage and retrieval of data composed by textual
and geographical data. In this paper, we focus on a probably

more common scenario of data consisting of texts and
conventional relational (single-valued) data sets. For this
purpose the access structure is based on a conventional
Bþ-Tree augmented by bit lists for indicating the presence
of terms below a node. Besides this structure, also an R-Tree
based one is evaluated.

Although several of these hybrid approaches with the
ability to index data of this mixed type are present, there is
no evidence about the temporal and spatial worst case
complexity. The major contributions of this work are a
theoretical basis to analyse hybrid access structures, an
in-depth analysis of index structures leading to the theoretical
construction of a hybrid index structure and an analysis of
asymptotic time and space complexity (see Section 3).

Finally, a practical construction and evaluation of the
previously analysed hybrid index structure with focus towards
the theoretical analysis (see Section 4) is carried out. Based on
a lack of space, related work is only discussed shortly.

2. Related work

New hybrid indexing strategies, enhancements, varia-
tions and compositions of existing concepts, like the
B-Tree [1] or the R-Tree [2] have been proposed to address

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

http://dx.doi.org/10.1016/j.jvlc.2014.09.004
1045-926X/& 2014 Elsevier Ltd. All rights reserved.

☆ This paper has been recommended for acceptance by Shi Kho Chang.
n Corresponding author.
E-mail addresses: richard.goebel@iisys.de (R. Göbel),

carsten.kropf@iisys.de (C. Kropf), sven.mueller@iisys.de (S. Müller).

Journal of Visual Languages and Computing 25 (2014) 800–807

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2014.09.004
http://dx.doi.org/10.1016/j.jvlc.2014.09.004
http://dx.doi.org/10.1016/j.jvlc.2014.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.09.004&domain=pdf
mailto:richard.goebel@iisys.de
mailto:carsten.kropf@iisys.de
mailto:sven.mueller@iisys.de
http://dx.doi.org/10.1016/j.jvlc.2014.09.004

performance issues on heterogeneous data. Approaches
are present treating terms differently according to the
frequency like [3]. Also a couple of different hybrid index-
ing methods or methods for management of data in hybrid
data spaces like [4] exists. Approaches like [5] (KRn-Tree),
[6] ((M)IR2-Tree) or [7] (bRn-Tree) investigate, among
others, the use of hybrid index structures combining
textual and spatial retrieval utilising the R-Tree [2] or its
variants (e.g. Rn-Tree [8]) which augment the R-Tree with
certain secondary structures (bitlists or inverted lists) to
enable set annotations at Rn-Tree elements. Approaches
like [9,10] or [11] represent hybrid index structures for
textual and spatial types which differ the treatment of
textual entries based on the relative or absolute term
frequency.

3. Analysis of access structures

This section analyses the worst case time and space
complexity of hybrid access structures. For this purpose
we will introduce a formal notation as a general basis for
analysing non-trivial access structures.

The general idea to formalise an index structure is
similar to the work of Hellerstein et al. (e.g. [12]). The
differences in our approach are motivated by the fact that
this paper deduces upper bounds for search time complex-
ity instead of lower bounds as in [12].

We will also show that a hybrid tree providing infor-
mation about both single-valued and multi-valued col-
umns in the upper nodes of the primary tree structure
ensures a time complexity of OðlogðnÞ �mÞ and a space
complexity of OðnÞ. The upper nodes of the tree only have
to be sorted according to the single-valued column.

3.1. Basic definitions

For analysing the access structure we will consider
a database table with “normalised” columns containing
single values and “non-normalised” columns with multi-
ple values. Although most of this analysis is more generic
we will assume that a multi-valued column contains a set
of terms. We will denote the set of entries for such a table
by a capital E and individual entries by e:

E¼ fe1;…; eng ð1Þ

For reasons of simplicity we assume a single set of values V
for all columns. A set of k projection functions pi retrieves
the values of the k individual columns:

pi: E-2V with i¼ 1;…; k ð2Þ

Projection functions may also be applied to sets of entries:

pi e1;…; ej
� �� �¼ pi e1ð Þ [⋯ [pi ej

� � ð3Þ

Single-valued (normalised) columns contain not more
than one value per entry:

8eAE: piðeÞ r1j
�� ð4Þ

With qi we denote the intersections between the sets of
values in the related column:

qi e1;…; ej
� �� �¼ pi e1ð Þ \ ⋯ \ pi ej

� � ð5Þ
The key idea of many access structures A is the assignment
of entries to groups which are not necessarily disjoint:

A¼ fN1;…;Npg with N1;…;NpDE ð6Þ
With this approach not all of these groups need to be
searched. For this purpose, each group N usually corre-
sponds to a value v which occurs in all entries of N at the
related column i:

8NAA(vAV : vAqiðNÞ ð7Þ
It is also important that each group N provides every entry
e which contains the corresponding value vAqiðNÞ in the
related column:

8vAV ; eAE; NAA: vApiðeÞ4vAqiðNÞ) eAN ð8Þ
An index structure with this definition is usually called an
inverted index. This definition, however, is sufficiently
generic to represent the group of entries referenced from
the (leaf) nodes of a tree structure (e.g. a B-Tree) for a
normalised column as well (8eAE: piðeÞ r1j

��).
With condition (7) and condition (8) the groups of the

access structure for a single-valued column are disjoint.

3.2. Complexity of queries addressing single columns

With the definitions from the previous section we are
ready to introduce complexity measures for time and
space required for processing queries. A simple search
condition for a column i is a set of alternative values CiDV .
With this approach we cannot only model conditions
specifying a single value for a column but also other types
of conditions like search ranges. All entries eAE which
contain at least one value of this set (piðeÞ \ Cia∅) are
part of the result set.

Complex search conditions consist of multiple search
conditions which may not only refer to different columns
but also to the same column. An example is a set of words
which all need to be included in a text column. For lack of
space we do not provide a formal definition of complex
search conditions in this paper.

We need to visit a group of an access structure if at
least one entry in the group satisfies the search condition.
Accordingly we define the function visit returning exactly
these groups:

visitðCi;AÞ ¼ NjNAA4 piðNÞ \ Ci
� �

a∅
� � ð9Þ

The result set for a search condition is the union of all
groups of the access structure which need to be visited:

Lemma 1. Let Ci ¼ v1;…; vp
� �

be a simple search condition
and A be an access structure. Then the following function
“result” provides all entries which satisfy Ci:

resultðCi;AÞ ¼ ⋃
NAvisitðCi ;AÞ

N

This lemma follows directly from conditions (7) and (8).

R. Göbel et al. / Journal of Visual Languages and Computing 25 (2014) 800–807 801

Download English Version:

https://daneshyari.com/en/article/10358797

Download Persian Version:

https://daneshyari.com/article/10358797

Daneshyari.com

https://daneshyari.com/en/article/10358797
https://daneshyari.com/article/10358797
https://daneshyari.com

