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a b s t r a c t

Spider diagrams provide a visual logic to express relations between sets and their

elements, extending the expressiveness of Venn diagrams. Sound and complete inference

systems for spider diagrams have been developed and it is known that they are

equivalent in expressive power to monadic first-order logic with equality, MFOL[¼].

In this paper, we further characterize their expressiveness by articulating a link between

them and formal languages. First, we establish that spider diagrams define precisely the

languages that are finite unions of languages of the form K Gn, where K is a finite

commutative language and G is a finite set of letters. We note that it was previously

established that spider diagrams define commutative star-free languages. As a corollary,

all languages of the form K Gn are commutative star-free languages. We further

demonstrate that every commutative star-free language is also such a finite union.

In summary, we establish that spider diagrams define precisely: (a) languages definable

in MFOL[¼], (b) the commutative star-free regular languages, and (c) finite unions of the

form K Gn, as just described.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spider diagrams [7,11] provide a visual notation for finite
sets, their members and interrelationships. An example
spider diagram is shown in Fig. 1. They are given a model
theoretic semantics, starting with a finite universal set, U,
and interpreting each closed curve, called a contour, as a
subset of U. Each minimal area (i.e. a region not further
subdivided by any segment of a contour), called a zone,
represents an intersection of sets and their complements.
Between them, the zones represent the universal set: the
union of the sets represented by the zones is U. For instance,
in Fig. 1, there are two contours, representing the sets P and

Q, along with four zones. The zone inside the contour P but
outside the contour Q represents the set P \ Q . Each dot (or
set of joined dots), called a spider, is interpreted as a distinct
element of the universe belonging to the appropriate set. For
example, the spider comprising a single dot in Fig. 1 tells us
that there is an element in the set P \ Q and the spider
comprising two dots tells us that there is another element
which is in the set P \ Q or in the set P \ Q ; the line
connecting the two dots represents disjunction. Finally, the
set represented by a shaded zone can only include elements
represented by spiders with a dot in that zone. In Fig. 1,
therefore, the zone inside P but outside Q contains at most
two elements, since there are two dots in this zone. This
diagram is an example of a unitary spider diagram. More
complex spider diagrams are formed by using logical
operators, such as 4 and 3. Spider diagrams also have an
associated sound and complete reasoning system [20] and,
in [11], Stapleton et al. showed that spider diagrams are
equally as expressive as monadic first-order logic with
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equality, MFOL[¼]. To illustrate this result, the spider
diagram in Fig. 1 is equivalent to the MFOL[¼] sentence

(x1(x2ðPðx1Þ4:Q ðx1Þ4:Q ðx2Þ4x1

ax248yððPðyÞ4:Q ðyÞÞ ) ðy¼ x13y¼ x2ÞÞÞ:

In this paper, we present a novel approach to the study
of spider diagrams, through examining their relationship
with regular languages. Regular languages lie at the heart
of theoretical computer science. Much is known about
how they relate to finite automata, symbolic logic, and
algebraic formalisms. Each of these relationships gives a
different insight into regular languages as well as illumi-
nating the other areas themselves. As with earlier work,
our study of spider diagrams with regular languages
provides insights into both regular languages and dia-
grammatic logic. For instance, we can now determine
whether two spider diagrams are semantically equivalent
by establishing whether they define the same language;
two languages are equal if the minimal automata that
accept them are the same.

We now explain how spider diagrams are associated
with languages. The first step assigns sets of letters to
contours, so that each zone corresponds to a single letter.
If we have contours labelled P and Q, as in Fig. 1, and
alphabet S¼ fa,b,c,dg then we can assign fa,bg to P and
fb,cg to Q. This induces an assignment of the letters to
zones as follows:

1. a is assigned to the zone that is inside the contour
P but outside the contour Q,

2. b is assigned to the zone that is inside both contours
P and Q,

3. c is assigned to the zone that is inside the contour
Q but outside the contour P, and

4. d is assigned to the zone that is outside both contours
P and Q.

This assignment of letters to zones is illustrated in Fig. 2.
Using this assignment, we can use spider diagrams to define
languages by considering the information provided by the
diagram. The presence of a spider in a diagram corresponds
to the presence of a letter in a word. For instance, in Fig. 1,
the spider comprising a single dot inside P but outside Q

tells us that words must contain an a, and the other spider
tells us that words must contain either an a (in addition to
that present because of the first spider) or a d (because of
the dot outside both contours). The disjunctive information
arises from the fact that this spider comprises two dots

connected by a line; the line represents disjunction. Thus, all
words in the language defined by this spider diagram must
contain one of the words aa, ad and da as a scattered
subword (defined in Section 3) of a. The shading provides an
upper bound on the number of occurrences of letters in
words: all of the letters that are assigned to shaded zones
must be represented by spiders. So, in Fig. 1, the shading
tells us that the only a letters arise from spiders because the
shaded zone is assigned the letter a. Apart from the
restriction on the number of as, any other letters can be
present. Thus, this spider diagram defines the language
faa,ad,dag fb,c,dgn; this is the shuffle product of faa,ad,dag

and fb,c,dgn which comprises of all words formed by
interspersing the letters of words in faa,ad,dag with words
in fb,c,dgn. Of note is that spider diagrams cannot assert any
ordering information between the letters of a word, so they
define only commutative languages.

We connect our work to Thomas’ definition of a
language definable by a sentence in MFOL[o] [22].
Thomas proves that the star-free regular languages,
including those which are not commutative, are precisely
those definable in monadic first-order logic of order
(MFOL[o]), in which the only binary predicate is o ,
interpreted as strict total order; the requirement for a
strict total order arises from the fact that languages
definable in MFOL[o] need not be commutative, so o
is necessary when placing constraints on the order of
letters. The notion of when a MFOL[o] sentence defines a
language requires a correspondence to be defined
between monadic predicate symbols and sets of letters,
just as we demonstrated when linking spider diagrams to
languages in our example above by assigning sets of
letters to contour labels. To illustrate, using the same
example alphabet S¼ fa,b,c,dg, we assign the set fa,bg to
the predicate symbol P and the set fb,cg to the predicate
symbol Q, just as we assigned these sets to contours
above. In this case, the MFOL[o] sentence

(xðPðxÞ48yðyax) xoyÞ

defines the language consisting of all words that begin
with a letter a or a letter b; intuitively, there is a letter ((x)
that is in the set fa,bg (since P(x) holds and P is assigned
fa,bg) that comes before every other letter (since
8yðyax) xoyÞ). Since this language is not commutative,
it is not definable by a spider diagram or in MFOL[¼ ].

In light of the observation that spider diagrams define
commutative languages, spider diagrams of order were
proposed [4], which are expressively equivalent to
MFOL[o] [5], and therefore define all star-free regular

Fig. 1. A spider diagram. Fig. 2. An assignment of letters to zones.
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