Computer Vision and Image Understanding 117 (2013) 603-619

journal homepage: www.elsevier.com/locate/cviu

Contents lists available at SciVerse ScienceDirect

Computer Vision and Image Understanding

Adjustable linear models for optic flow based obstacle avoidance *

Manuela Chessa *, Fabio Solari, Silvio P. Sabatini

Department of Informatics, Bioengineering, Robotics and System Engineering — DIBRIS, University of Genoa, Via all’Opera Pia 13, 16145 Genova, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 21 July 2011

Accepted 26 January 2013
Available online 5 February 2013

Keywords:

Motion interpretation
Affine description
Recursive filtering

Kalman filter
Time-to-contact

Surface orientation
Biologically inspired vision

An original framework to recover the first-order spatial description of the optic flow is proposed. The
approach is based on recursive filtering, and uses a set of linear models that dynamically adjust their
properties on the basis of context information. These models are inspired by the experimental evidence
about motion analysis in biological systems. By checking the presence of these models in the optic flow
through a multiple model Kalman Filter, it is possible to compute the coefficients of the affine description
and to use this information for estimating the motion of the observer as well as the three-dimensional
orientation of the surfaces in some points of interest in the scene. In order to systematically validate
the approach, a set of benchmarking sequences is used, and, finally, the proposed algorithm is success-
fully applied in real-world automotive situations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The problem of visual motion interpretation has been a major
concern in computer vision for many years and it remains one of
the most challenging problems. Since the ability to move in a struc-
tured environment and to estimate impeding collisions is a vital
requirement for any organism, both living and artificial, several
multidisciplinary studies address the problem, ranging from
behavioral studies in many different animal species, to collision
avoidance approaches in automotive and robotics applications.
To guide a vehicle in an environment we are interested in how it
should detect the presence of other objects, both moving and still,
that occupy its path. This is related to the movement of the vehicle
itself, to the velocity of the other objects in the environment and to
the three-dimensional (3D) structure of the environment [1]. In the
literature, a wide variety of solutions to the problem of visual guid-
ance have been proposed, based on different measurements and
different estimation algorithms. The different approaches can
either use sparse sets of corresponding feature points or dense op-
tic flow estimates, then both linear and nonlinear techniques are
applied to obtain estimates of the 3D parameters.

The main contributions of this paper, that extends and system-
atically validates the approach presented in [2], are:
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- torecover a robust affine description of the optic flow by using a
biologically inspired method, based on a set of adjustable tem-
plates that analyze the dense input optic flow in order to com-
pute its linear approximation through a recursive approach
based on a multiple-model Kalman Filter (KF) and

- to obtain reliable information about the 3D structure of the
environment in terms of the orientation of the surfaces in some
points of interest in the scene, such as the heading direction and
the independently moving objects (IMOs), and to derive a mea-
sure of the nearness of objects in time, also known as time-to-
contact (TTC), by combining the affine estimates.

The rest of the paper is organized as follows. We review the re-
lated works in Section 2. The affine models of image motion are
introduced in Section 3. In Section 4 we describe our recursive ap-
proach to compute the affine description of the optic flow. The
problem of motion interpretation for obstacle avoidance, by com-
puting the TTC and the surface orientation, is addressed in Section
5. In Section 6 the proposed approach is validated with respect to a
set of specifically designed benchmarking sequences, and to real-
world situations. In Section 7 we compare the proposed method
with respect to some state-of-the-art approaches. In Section 8 we
draw the conclusions.

2. Related works

The original formulation of a computational theory of the inter-
pretation of visual motion, caused by the projection of a moving
surface, is described in [3,4]. In [5,6], the authors showed that a
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closed form solution for the 3D motion and surface orientation can
be obtained from the quadratic parameters of the motion field. A
closed form solution using only first-order coefficients for two or
more distinct planes was described in [7]. However, the main prob-
lem of these algorithms is that they are noise sensitive and conse-
quently not sufficiently robust. A robust recursive algorithm for
recovering structure from motion, able to provide the normal to
the surfaces, as well as the 3D motion, has been proposed in [8].
In that paper, the author estimates the affine motion parameters
from the image sequence and then uses an Extended Kalman Filter
in order to integrate over time and to obtain robust estimates of
the motion parameters. In a recent review [9], several methods
to recover motion parameters (i.e. ego-motion) from image se-
quences are presented and compared.

Among the approaches that aim to solve the problem of motion
interpretation, many different approaches also addressed the prob-
lem of the estimation of the TTC. They can be classified in the fol-
lowing groups: optic flow based approaches, approaches based on
feature (points or lines) correspondences, and approaches based on
closed contours.

Many optic flow based approaches work on first-order (affine)
approximation of the motion field. In [10] the authors describe a
computational scheme based on the computation of first-order
spatial properties of optic flow. They applied the proposed ap-
proach to compute the TTC by integrating over a number of inde-
pendent motion measurements, from a real-world controlled
situation (natural scenes acquired in their laboratory). Their esti-
mates can be affected by large errors and become point-wise unre-
liable, but more stable and accurate estimates are obtained by
using a Kalman filtering procedure. Although the results presented
by the authors prove the validity of the approach, they are not
accompanied by quantitative benchmarks or a systematic testing
of the method. In [11] the author demonstrates how TTC can be ro-
bustly and accurately recovered by using a single-calibrated cam-
era, using a first-order model of the motion field. The affine
model of the 2D field is computed with a multiresolution approach,
with an approach similar to the one described by [12], instead of
directly deriving a dense optic flow field. Furthermore in their ap-
proach a standard Kalman Filter is used on the Taylor coefficients
to smooth the motion parameters over time. The author applied
the proposed approach on real-world sequences, showing both
qualitative and quantitative results. The proposed approach, even
if it does not require the complete computation of the optic flow
field, has a high computational cost and it is quite sensitive to noise
and to variations in the illumination. A method to estimate
time-to-collision with a biologically motivated population coding
of motion energy neuron is presented in [13]. The developed
framework is used to estimate both the optic flow and the TTC,
and comparisons with the TTC estimated starting from other optic
flow methods are presented. Optic flow has been used to design
autonomous guidance algorithms for several robotic applications
(e.g. see [14-17]). Nevertheless, such approaches are inspired by
simple biological systems, thus they are not directly comparable
to the method presented in this paper.

Other approaches for the computation of TTC are based on fea-
ture (points and lines) correspondences [18], these methods suffer
when the localization of corner features is insufficient for a reliable
estimation of the differential invariants, as described in [19]. In
[20] the authors proposed a method for obstacle detection, by com-
puting the differential invariants (divergence and deformation)
from the change in moments in the images. They aimed both to
give an interpretation of the scene, in terms of orientation of the
surfaces, and to compute TTC, once they have decided if an object
could be an obstacle or not. They applied the proposed approach in
real-world situations, in an automotive context, even if they have
not performed an extensive evaluation of their method.

A completely different approach is proposed in [21], where the
authors define the boundary of a patch in the image by B-splines.
The variation in time of the boundary of the patch is determined
by integration of the normal flow components along its boundary.
From the relationships between divergence and deformation, both
the orientation of the surfaces and the TTC are estimated, without
the need for a dense accurate optic flow fields. A disadvantage of
these methods is the need of finding a robust closed contour on
the objects toward which one aims to estimate the slant, the tilt
or the TTC.

3. Affine models of image motion
3.1. Elementary flow components

The image motion field v = (2, 3,)” can be described in terms of
its linear decomposition, on the basis of its first-order (linear)
properties. From this perspective, local spatial features around a gi-
ven location of flow field, can be of two types: (1) the average flow
velocity at that location and (2) the structure of the local variation
in a neighborhood of that locality. The former relates to the
smoothness constraint or structural uniformity. The latter relates
to linearity constraint or structural gradients [22]. Velocity gradi-
ents provide important cues about the 3D layout of the visual
scene. Formally, they can be described as linear deformations by
a first-order Taylor decomposition, around the image point
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By breaking down the tensor in its dyadic components, the mo-
tion field can be locally described through two-dimensional maps
(g:R? — R?) representing elementary flow components (EFCs):
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where o*:(x,y)+— (1,0), &:(x,y)+— (0,1) are pure translations and
d :(x.y)— (x0), d:(x,y)—~(1.0), & :(xy)—(0x), d: (xy)—
(0,y) represent cardinal deformations, basis of a linear deformation
space. It is worth noting that, by weighting through the coefficients
a;, the components of pure translations could be incorporated in the
corresponding deformation components, thus obtaining generalized
deformation components in which motion boundaries are shifted or
totally absent:
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In this way, we have four classes of deformation gradients (see
Fig. 1): one stretching (#}) and one shearing ( #}) for each cardinal
direction. As it will be clear in the following, this choice gives to the
model maximum flexibility: every gradient deformation within a
single class will be built through the same recurrent network, just
by changing its driving inputs on the basis of direct local measures
on the input optic flow. The EFCs can be combined to obtain defor-
mation subspaces representing elementary deformations such as
expansion, shear and rotation as shown in Fig. 2.

It is worthy to note that Egs. (2) and (3) describe, in fact, an af-
fine model:
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