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a b s t r a c t

Having an accurate parametric description of the iris borders is a critical issue for iris recognition systems
based on Daugman’s rubber sheet normalization. Many methods in the literature use very powerful and
effective schemes for iris segmentation but often apply a simple estimator procedure, such as the Hough
Transform or Least Square Fitting to get this parametric description. Those fitting methods are very sen-
sitive to the segmentation quality as inaccuracies will provoke large errors in the resulting contour.

In this article we propose an effective way to find optimal parameters for ellipses in order to proceed
the normalization. Our method is based on a variational formulation of the well-known Active Contour
techniques leading to a compact formulation for elliptic contours. We show improvements compared
to an Elliptic Hough Transform and a Direct Least Square Fitting on the following databases: ICE2005,
ND-Iris and Casia-Lamp. We also demonstrate that our scheme can be paired effectively with different
segmentation algorithms. Significant improvements of the recognition results were obtained when add-
ing our algorithm after the segmentation stage of VASIR and OSIRIS, two open source packages for iris
recognition.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Biometrics studies the identification of people using their
intrinsic characteristics. Among the various biometrics studied,
the iris texture has shown a highly distinctive capacity to charac-
terize people. It can be captured without contact and is assumed
to be very stable over long periods of time (though, this last claim
has been challenged in [12]). For these reasons, iris recognition sys-
tems have been deployed in several critical applications, such as
fast border checking [3,14] or recently in the UIDAI program in In-
dia [34].

Most iris recognition systems are based on the earliest works of
Daugman [11] and are usually divided into the following main
parts: iris acquisition, segmentation, normalization and feature
extraction (see Fig. 1) which are set out below.

Acquisition:
The image acquisition is done under Near Infra Red (NIR) illumina-
tion, having wavelengths between 700 and 900 nm. At these

wavelengths even dark brown irises show a very rich texture
which is suitable for recognition. In a standard controlled acquisi-
tion scenario, the subject is asked to stand still and look straight at
the camera at a short distance. However, recent works tend to relax
the acquisition conditions. For example an image can be acquired
at a distance [2] or using a visible wavelength [28]. Subjects are
also less constrained: they may not look straight at the camera
[7] or move during the acquisition [20].

Segmentation:
Given the acquired eye image, the first algorithmic task is the seg-
mentation of the iris, aiming at isolating the iris texture from other
elements of the image such as eyelids, shadows or glasses. This
segmentation is challenging as the more the acquisition conditions
are relaxed, the more degradations have to be handled at this
stage.

Normalization:
The texture is mapped into a dimensionless coordinate system to
handle variability in the eye image such as pupil dilation. The most
common choice for normalization is the rubber sheet model intro-
duced by Daugman in [11]. The iris borders are modeled by two
nonconcentric circles and the texture is unwrapped with respect
to these circles. Precision is a critical issue at this stage as small
errors in the circles’ parameters estimation can dramatically
decrease the performance of the overall system, as outlined by Pro-
enca in [27].
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Feature Extraction:
Finally, discriminative iris texture’s features are extracted. These
features are the basis of the comparison of probe and gallery iris
images. The most used features are based on a quantization of
Gabor filters’ phase. This quantization generates a binary code
characterizing the iris. A comparison between irises is made by
computing the Hamming distance of the two binary codes.

Degradations resulting from the relaxation of the acquisition
conditions affect all stages of the system but in this paper we focus
on the normalization stage. In systems deriving from [11], match-
ing is done by aligning the features of specific points from the nor-
malized image, i.e., the rectangular unwrapped texture of the two
irises. If the unwrapping is not done properly, the two textures, and
therefore, the corresponding points do not correctly align and rec-
ognition performance is affected. Consequently, the robustness and
precision of the unwrapping is a critical aspect of iris recognition
systems.

Iris borders have traditionally been modeled as a pair of circles.
The main limitation of this approach is that the circular assump-
tion does not stand for off-angle images or people with a pupil or
an iris which is anatomically non circular. To address these short-
comings, more general shapes need to be considered, such as ellip-
ses or general parametric contours.

Ellipses are the intuitive extension of circles, but the two classi-
cal operators used to find circles in the iris literature (Daugman’s
Integrodifferential Operator (IDO) and the Circular Hough Trans-
form (CHT)) do not extend well to ellipses. These operators need
the evaluation of an accumulator whose dimension is the number
of parameters in the model. Going from 3 parameters for the circle
to 5 for the ellipse dramatically increases the computation time,
making these operators unsuitable for real-time applications. For
this reason, most articles working with ellipses use an elliptic Di-
rect Least Square Fitting (DLS) [13] to fit ellipses onto the iris bor-
ders. This method is very fast, but suffers from the usual drawback
of least square methods: sensitivity to outliers.

General parametric contours are able to handle any shape for
iris borders [10,15,26]. They can achieve very good recognition
performance but are strongly dependent on the segmentation
stage. Hence, in order to apply them, it is necessary to efficiently
distinguish between the pixels belonging to the anatomic borders
of the iris and the edges generated by occlusions. If some pixels
are misclassified, the resulting contours will be wrongly localized
and recognition performance will accordingly be affected.

In this article, our aim is to propose a precise, robust and effec-
tive way to fit ellipses on iris borders in order to perform the nor-
malization. Our method, which we have called Elliptic Variational
Fitting (EVF) consists in a classical energy-based optimization de-
rived from the Active Contours (AC) formalism. We assume the
segmentation can provide a rough location for the iris borders,

EVF then morphs these initial contours into ellipses that correctly
fit the iris borders. The energy used for the variational optimization
is composed of an edge term ensuring that the ellipse relies on
areas of strong gradient, a region term based on region competition
heuristics [38], such that the ellipse separates regions having dif-
ferent statistical descriptions; finally, a regularization term ensures
getting a correct fitting even if few information is available (highly
occluded images for example). These energies are classical in the
AC literature, but to the best of our knowledge they have not been
specifically adapted to elliptic contours. The interesting aspect of
this approach is that unlike most fitting methods it does not rely
on the segmentation results or on an edge detector. As a conse-
quence our proposed method can even correct some segmentation
inaccuracies in addition to giving the suitable contours for
normalization.

This paper is organized as follows: Section 2 presents a review
of classical segmentation approaches in iris literature and shows
how this choice affects the normalization stage. Section 3 presents
our novel algorithm to find elliptic contours for normalization. Sec-
tion 4 briefly exposes our overall recognition system based on B-
Snakes for segmentation and standard 2D Gabor wavelets for fea-
ture extraction and matching. Section 5 evaluates the performance
of our system (presented in Section 4) for different normalization
algorithms on reference databases. In this section, we also address
specific issues like the evaluation of our contour fitting approach
on off-angle images, computation times and improvements ob-
tained on open source software for iris recognition.

2. Related work

Most iris recognition systems rely on Daugman’s rubber sheet
model for normalization [11]. In this early work the pupil and
the iris borders are modeled using two non concentric circles,
Cpðxcp; ycp; rpÞ for pupil circle and Ciðxci; yci; riÞ for iris circle with
parametrization:

xpðhÞ ¼ xcpðhÞ þ rp cosðhÞ;
ypðhÞ ¼ ycpðhÞ þ rp sinðhÞ;

ð1Þ

xiðhÞ ¼ xciðhÞ þ ri cosðhÞ;
yiðhÞ ¼ yciðhÞ þ ri sinðhÞ;

ð2Þ

with h 2 [0,2p[. The formula to unwrap the annular part between
the two circles is then:

xðr; hÞ ¼ ð1� rÞxpðhÞ þ rxiðhÞ;
yðr; hÞ ¼ ð1� rÞypðhÞ þ ryiðhÞ;

ð3Þ

with r 2 [0,1[ and h 2 [0,2p[. This model can handle changes in
pupil size, however it can not handle problems explained in the

Fig. 1. Complete iris recognition system: The goal is to compare a newly acquired image (probe image) with a reference image (gallery image). (a) Probe image acquired in
NIR. (b) Segmented iris texture. (c) Unwrapped iris texture (top) with its segmentation mask (bottom). (d) Binary code characterizing the probe iris. (e) Reference binary code
of the gallery image. (f) Comparison of the two iris codes using Hamming distance.
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