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We describe an Eikonal-based algorithm for computing dense oversegmentation of an image, often called
superpixels. This oversegmentation respects local image boundaries while limiting undersegmentation. The pro-
posed algorithm relies on a region growing scheme,where the potentialmap used is not fixed and evolves during
the diffusion. Refinement steps are also proposed to enhance at low cost the first oversegmentation. Quantitative
comparisons on the Berkeley dataset show good performance on traditional metrics over current state-of-the art
superpixel methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing amount of available data, and the need for fast
and accurate processing, the simplification of data becomes a crucial
point for many applications. A convenient way to address this task is
to consider that data can be modeled with a graph G = (V, E, w),
where V is the set of vertices, Eis a set of edges, andw N 0 is the weight
function that models the interaction between vertices. Exhibiting clus-
ters of this graph leads to a simplification of the data and decreases
the size of the problem. Many techniques of graph clustering have
been proposed such as cut-based, spectral or random walk methods
(see [16] for a comprehensive review of these techniques).

Recent works [3] adapt the eikonal equation to graphs in order to
perform over-clustering from an initial set of annotated vertices V0.
Let f : V → ℝ be a real-valued function that assigns a real value f(u) to
each vertex u ∈ V. The reformulation of the Eikonal equation in the
graph domain leads to the equation:
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f uð Þ ¼ ϕ uð Þ ∀u∈ V0
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where (∇w
−f )(u) is the weighted morphological gradient at a vertex u

(see [11] for details), P is a positive function, and ϕ is an initialization
function.

In this paper, we focus on grid graphs for image processing with the
aim of grouping perceptually and adjacent pixels into meaningful
regions, the so-called superpixels. Superpixels have become an important

step in many computer vision applications such as segmentation [8,22],
object localization [7], depth estimation [24], and scene labeling [5].

Some properties of an algorithm that generate superpixels are often
desirable: (1) Superpixels should adhere well to object boundaries
while limiting undersegmentation errors, (2) as superpixel methods
are used as preprocessing, the algorithm should have a low complexity,
and (3) it has to be simple to use (i.e. few parameters). In addition,
some other properties may be desired: the control of the amount of
superpixels, or the compactness of them.

Several superpixel algorithms exist in the literature, and they can be
roughly divided into two approaches: The first consists in gradually
growing superpixels from an initial set of centers. This approach in-
cludesWatershed [21], Turbopixels [10], SLIC [1], Consistent Segmenta-
tion [25] and Quick Shift [19]. The second approach relies on a graph
formulation of the problemand aims atfinding an optimal cut according
to an objective function that takes similarities of neighboring pixels into
account. This approach includes Entropy-based energy functionmethod
[12], optimal cuts [14,13], graph-cut [20], and agglomerative clustering
of the nodes of the graph [6].

In this paper, we propose a newalgorithm for superpixel generation:
Eikonal-based Region Growing Clustering1 (ERGC) that starts from an
initial set of seeds and dilates them, and then refines the result over-
segmentation by adding/moving cuts. It formulates the superpixel seg-
mentation task as a solution of an Eikonal equation. Eq. (1) becomes:

∇U xð Þk k ¼ F xð Þ ∀x∈ I
U xð Þ ¼ 0 ∀x∈ Γ

�
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1 Source code and executable of ERGC can be found athttps://sites.google.com/site/
pierrebuyssens/ergc.
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where I is the image domain, F a positive function, Γ the set of initial
seeds, and U(x) the traveling time or geodesic distance of x from source
Γ. Focusing on grid graphs, it can be solved efficiently with the
Fast-Marching method. The major change proposed in this paper
concerns the function F, which is not fixed and evolves during the
front evolution. It is detailed at Section 2.2.

ERGC is simple to use (by default, the only parameter is the desired
number of superpixels), as fast as other superpixel methods, and out-
performs them on two of the three traditional metrics.

The rest of the paper is organized as follows: Section 2 details the
proposed potential function F, and the ERGC algorithm. Section 3 gives
qualitative and quantitative comparisons of performances between
ERGC and state-of-the-art methods. Some aspects and extensions of
the proposed method are than discussed in Section 4, while Section 5
concludes the paper.

2. Superpixel method

2.1. Notations

In the followingwe adopt several notations to simplify the reading of
the paper. A particular pixel of image I is noted p and consists of a
coordinate couple (xp, yp). A region Ri consists of a seed pixel si and a
size Ni in pixels. The color of a pixel p is noted Cp, and the mean color
of a region Ri is noted Ci.

Note that the color images are considered in the CIELAB colorspace,
so the color vector of a pixel (or a region) C reduces to [l, a, b]T.

2.2. Proposed potential function

Since a superpixel method aims at grouping perceptually and adja-
cent pixels into meaningful regions, we propose a potential function F
that conveys this desirable property. The right term of Eq. (2) is com-
puted according to the mean color of the adjoining region:

Fc p;Rið Þ ¼ Cp−C i
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2
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This potential function measures the perceptual color distance
between the pixel p and the region Ri. For color images in the CIELAB
colorspace, F reduces to:

Fc p;Rið Þ ¼ lp−li
� �2 þ ap−ai

� �2 þ bp−bi
� �2 ð4Þ

where [li, ai, bi]T is the mean color vector of region Ri.
In comparison to traditional gradient-based approaches [3] where

F(p) = ‖∇I‖, the proposed formulation favors the grouping of similar
pixels, even for pixels that are far from the initial seeds (Fig. 2).

As a numerical solver of the Eikonal Eq. (2), we adopt the Fast-
Marching method introduced by Sethian in [17]. It uses a priority
queue to order the pixels as being the current estimate of the geodesic

distance to the closest seed (see [15] for a detailed description of the
Fast-Marching algorithm).

Within the Fast-Marching algorithm, each time a pixel p is inserted to
a region Ri, the attributes of this region are easily updated:

C i ←
C i � Ni þ Cp

Ni þ 1
Ni ← Ni þ 1

8<
: : ð5Þ

Fig. 1. Left: Initial imagewith the given seed depicted as thewhite dot. Middle: geodesic distancemap U in false color obtainedwith the gradient-based potential function. Right: geodesic
distancemap obtainedwith the proposed potential function. A segmentation of the square based on the geodesic distances cannot be obtainedwith the gradient-based potential function.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. First row: initial image. The back and white circles depict the initial seeds. Second
row: the result segmentation with the proposed F (left) and the gradient-based potential
function (right). Third row: geodesic distances map U in fake color. Some isocontours are
shown in white. Last row: segmentation of a natural scene. Seeds are depicted in black.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

1046 P. Buyssens et al. / Image and Vision Computing 32 (2014) 1045–1054

image of Fig.�1
image of Fig.�2


Download English Version:

https://daneshyari.com/en/article/10359471

Download Persian Version:

https://daneshyari.com/article/10359471

Daneshyari.com

https://daneshyari.com/en/article/10359471
https://daneshyari.com/article/10359471
https://daneshyari.com

