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Abstract

We report here on image texture analysis and on numerical simulation of fractional Brownian textures based on the newly emerged

Empirical Mode Decomposition (EMD). EMD introduced by N.E. Huang et al. is a promising tool to non-stationary signal representation as a

sum of zero-mean AM-FM components called Intrinsic Mode Functions (IMF). Recent works published by P. Flandrin et al. relate that, in the

case of fractional Gaussian noise (fGn), EMD acts essentially as a dyadic filter bank that can be compared to wavelet decompositions.

Moreover, in the context of fGn identification, P. Flandrin et al. show that variance progression across IMFs is related to Hurst exponent H

through a scaling law. Starting with these recent results, we propose a new algorithm to generate fGn, and fractional Brownian motion (fBm)

of Hurst exponent H from IMFs obtained from EMD of a White noise, i.e. ordinary Gaussian noise (fGn with HZ1/2).
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1. Introduction

This paper addresses the use of Bidimensional Empirical

Mode Decomposition (BEMD), a 2D extension [1,2] of the

so-called EMD proposed by N.E. Huang et al. [3], to

simulate fractional processes. Many natural processes such

as weather data, optical, electrical or physiological

measurements, and man made phenomena such as traffic

flow data exhibit spectrums which have been observed to

follow the 1/f law. For this reason, fractional Brownian

motion (fBm) processes are very important because the

spectrum follows a 1/f power law. In fact, fBm is the only

known correlation model that satisfies Wornell’s definition

of 1/f processes [4]. One characterizing feature of fBm is its

statistical self-similar property [5], which means that the

variance of increments of a process obeys a hyperbolic

scaling law so that the statistical properties of the process at

any two scales are the same within a scaling constant. The

exponent of the hyperbolic law deals with the Hurst

parameter H that quantifies the persistence of an fBm

realization. In fractal theory, Hurst exponent is related to the

fractal dimension in a simple manner [6]. The fBm model

has been successfully used in texture analysis and synthesis,

landscape modeling and speech segmentation. Especially, in

computer vision, Brownian texture is a widely used

Gaussian process with a variety of applications in image

analysis, e.g. in physics, medical and fractal imaging.

The estimation of the fractal dimension, or of the Hurst

exponent of an fBm realization has proven to be an

important problem both for signal and image analysis.

Traditional techniques are based on some type of regression

analysis to measure the hyperbolic progression of the

average size of increments at varying scales, the progression

of power versus frequency, or the progression of the

variance of the wavelet coefficients at different scales [7–9].

A maximum likelihood fractal and fGn estimators were

proposed in [10,11]. More recently, an estimator for noisy

fBm measurements that takes advantage of the decorrelation

effects of orthogonal wavelets was published in [12,13].

There exist algorithms for simulating general fractional

processes with a given autocovariance function. These

algorithms can be used for generating 1D signals or texture

images. Textures and natural data are often modeled by the

increments of the sampled fBm, known as (discrete)
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fractional Gaussian noise (fGn). Therefore, fBm and fGn, or

simply fractal models, have been successfully applied to

texture analysis and synthesis [9,14–16] and terrain

modeling [17–19]. For a general point of view, there exist

several methods for generating long-range dependent

processes, such as fBm or fGn. Two classes of methods

can be defined; (i) Cholesky Decomposition methods based

on fGn covariance matrix, and (ii) spectral [20], wavelets

[7] or autoregressive models [21] methods. See [22] for a

survey about these methods.

Both comparison of proposed synthesis method with

others published methods and fully validation are beyond

the scope of this paper. We just reported here that EMD

method might offer a new way to synthesis fractional

processes in 1D and 2D space.

2. Empirical mode decomposition and fractional

processes

2.1. EMD method

Applying the EMD method will generate a collection of

Intrinsic Mode Functions (IMFs). The decomposition is

based on direct extraction of the energy associated with

various intrinsic time scales. The combination of the EMD

method and associated Hilbert spectral analysis [3] can offer

a powerful method for non-linear and non-stationary data

analysis. We summarized here the Empirical Mode

Decomposition method. Details of the implementation

of EMD algorithm and Matlab codes are fully available in

[1,3,23,24]. The central idea of the EMD is the sifting

process to decompose any given signal into its fundamental

modes. With this approach, the basis functions themselves

are non-linear functions, which can be extracted directly

from the data. So, an adaptive basis called Intrinsic Mode

Function (IMF) can be found. To be an IMF, a signal must

satisfy two criteria, the first one being that the number of

local maxima and the number of local minima differ by at

most one, and the second, the mean of its upper and lower

envelopes equals zero.

For any signal, s(t), EMD ends up with the following

representation

sðtÞ Z rhkiðtÞC
XK

kZ1

ChkiðtÞ; (1)

where Chki(t) is the kth mode (or IMF) of the signal, and

rhKi(t) stands for residual trend (a low order polynomial

component).

Sifting procedure produces a finite (and limited) number

of modes that are zero-mean AM-FM components.

Functions Chki(t) are nearly orthogonal to each other, and

by nature of the decomposition procedure, the technique

decomposes data into K fundamental component, each with

distinct time scale: the first component has the smallest time

scale, which correspond to the fastest time variation of the

data. As the decomposition proceeds, the time scale

increases, and hence, the mean frequency of the mode

decreases.

An example of decomposition is illustrated in Fig. 1. The

original signal is a White noise realization of data length
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Fig. 1. Empirical Mode Decomposition of a White noise realization (NZ
210). Upper trace, White noise x2N(0,1). Lower traces, IMFs Chki (kZ
1,.,9) and residue rh9i.
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Fig. 2. Examples of EMD-based simulation of fractional processes. Top,

fGn generated processes for different Hurst exponent values, HZ0.2, 0.5

and 0.8 from left to right. Bottom, fBm generated processes.
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