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a b s t r a c t

The scene flow describes the motion of each 3D point between two time steps. With the arrival of new
depth sensors, as the Microsoft Kinect, it is now possible to compute scene flow with a single camera,
with promising repercussion in a wide range of computer vision scenarios. We propose a novel method
to compute a local scene flow by tracking in a Lucas–Kanade framework. Scene flow is estimated using a
pair of aligned intensity and depth images but rather than computing a dense scene flow as in most pre-
vious methods, we get a set of 3D motion vectors by tracking surface patches. Assuming a 3D local rigid-
ity of the scene, we propose a rigid translation flow model that allows solving directly for the scene flow
by constraining the 3D motion field both in intensity and depth data. In our experimentation we achieve
very encouraging results. Since this approach solves simultaneously for the 2D tracking and for the scene
flow, it can be used for motion analysis in existing 2D tracking based methods or to define scene flow
descriptors.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The scene flow corresponds to the 3D motion field of the scene
[1] and since it provides the motion of 3D points, an accurate esti-
mation of the scene flow can be useful in a wide variety of applica-
tions including navigation, interaction, object segmentation,
motion analysis, tracking, etc.

A current topic of great interest is human activity understand-
ing, where video analyzing and interpretation is required to per-
form recognition or classification, and the 3D information given
by the scene flow may be used to provide powerful features. How-
ever, there is no work that directly computes scene flow to perform
tasks like human action recognition or gesture classification. Prob-
ably, this is due to the fact that most existing methods require ste-
reo or multi-view camera systems, which are not always available.
Besides, most of these methods compute a dense scene flow by
optimizing a global energy function, spending a lot of processing
time and becoming not suitable for real time applications. On the
other hand, the optical flow that is related with the scene flow pro-
jection on the image plane has been successfully used in human ac-
tion recognition. Histograms of optical flow are commonly used in
state-of-the-art techniques in action recognition to construct
descriptors over spatio-temporal interest points [2–4] and to ex-
tract 2D trajectories by tracking key-points [4–6]. Furthermore,

since trajectory based methods outperform other state-of-the-art
approaches for action classification [7], it is promising to use scene
flow to capture motion information by extracting accurate 3D
trajectories.

Recently with the arrival of depth cameras, based either on
time-of-flight (ToF) or structured light sensing, it has been possible
to compute scene flow using a pair of registered sequences of
depth and intensity, as recently in [8,9]. Depth sensors have de-
creased system requirements needed to compute the 3D motion
field, opening the door to incorporate scene flow based features
in common recognition tasks. Some attempts have been made to
include depth data in human action recognition tasks. For example,
a bag of 3D points extracted from the depth data is used for recog-
nition in [10] while in [11] descriptors obtained by well known
techniques [2,12] were extended with depth information, outper-
forming the original methods. Similarly, when a depth sensor is
available the scene flow can be inferred from the optical flow by
using the depth information. However, as we show in this paper,
even small errors in the optical flow may generate significant er-
rors in the scene flow computation. Computing scene flow in this
way does not fully exploit the relation between the intensity and
depth information. In this work we aim to explore how to simulta-
neously use intensity and depth data to compute local scene flow.
As a result, we propose a method that can be used to get accurate
3D trajectories and define scene flow based descriptors.

One of the main contributions of this paper is the definition of a
pixel motion model that allows the constraint of the scene flow in
the image. Using this motion model and assuming a 3D local rigid-
ity of the scene, we are able to solve for the scene flow that best
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explains the observed intensity and depth data. Therefore, our
method combines information of both sensors and simultaneously
solve for the scene flow and its projection in the image, which we
named image flow. This approach differs from previous scene flow
methods using depth sensors, since they reconstruct the scene flow
from the observed optical flow [8] or by using a large number of
hypotheses to explain the motion of each point in 3D [9], without
exploiting the 2D parameterization. Moreover, unlike other scene
flow methods that suffer from the smoothness constraint brought
by 2D parameterization, we use a 3D local rigidity assumption,
which is approximately real for most of the scenes of interest.

The other contribution of the paper is the formulation of a local
scene flow computation method by extending the Lucas–Kanade
framework [13] to exploit both intensity and depth data. In this
formulation, it is possible to treat with large displacements in a
coarse-to-fine procedure. Besides, instead of solving for a dense
scene flow by optimizing a global energy, as most of previous
methods, we solve for a local scene flow that can be focused over
a selected set of key-points. This formulation is versatile enough
to extract accurate 3D trajectories, initialize other methods by
computing a dense scene flow, or refine a estimated 3D motion
field over specific points. Unlike previous scene flow methods
our local approach is suitable for real time applications and its
extension to multiple cameras or depth sensors is straightforward.

1.1. Related work

Scene flow was first introduced by Vedula et al. [1] as the full 3D
motion field in the scene. Most scene flow methods assume a ste-
reo, or multi-view camera system, in which the motion and the
geometry of the scene are jointly estimated, in some cases, under
a known scene structure. Since optical flow is (an approximation
of) the projection of the 3D motion field on the camera image
plane, an intuitive way to compute scene flow is to reconstruct it
from the optical flow measured in a multi-view camera system,
as proposed by Vedula et al. [14], or including a simultaneously
structure estimation as Zhang and Kambhamettu [15]. However,
it is difficult to recover a scene flow compatible with several ob-
served optical flows that may be contradictory.

The most common approach for estimating scene flow is to per-
form an optimization on a global energy function, including photo-
metric constraints and some regularization. Some authors
introduce constraints of a full calibrated stereo structure [16–20].
Wedel et al. [17] enforce consistency on the stereo and motion
solution but they decouple the disparity at the first time step with-
out exploiting the spatio-temporal information. To overcome this
limitation, simultaneous solution of the scene flow and structure
was proposed. Huguet and Devernay [18] simultaneously compute
the optical flow field and two disparities maps, while Valgaerts
et al. [21] assume that only the camera intrinsics are known and
they show that scene flow and the stereo structure can be simulta-
neously estimated.

All these methods suffer from the smoothness constraints
brought by 2D parametrization. Basha et al. [19] improve the esti-
mation by formulating the problem as a point cloud in 3D space
and the scene flow is regularized using total variation (TV). Re-
cently, Vogel et al. [20] regularize the problem by encouraging a lo-
cally rigid 3D motion field, outperforming TV regularization.
Furthermore, other methods simultaneously solve the 3D surface
and motion [22,23]. Another possibility is to work in the scene do-
main, and to track 3D points or surface elements [24,25]. Carceroni
and Kutulakos [24] model the scene as a set of surfels but it re-
quires a well-controlled lighting and acquisition setup, and be-
cause its complexity the scene flow solution is only suitable in a
limited volume. Rather than computing a dense scene flow, Dever-
nay et al. [24] directly get a set of 3D trajectories from which the

scene flow is derived. However, this method suffers from drifts
problems and its proposed point visibility handling is a difficult
task.

When a depth camera is available, the sensor provides structure
information and surface estimation is not needed. Spies et al. [26]
estimate the scene flow by solving for the optical flow and range
flow. Lukins and Fisher [27] extend this approach to multiple color
channels and one aligned depth image. In these approaches the 3D
motion field is computed by constraining the flow in intensity and
depth images of an orthographically captured surface, so that, the
range flow is not used to support the optical flow computation. Let-
ouzey et al. [8] directly estimate the 3D motion field using photo-
metric constraints and a global regularization term without fully
exploiting the information given by the depth sensor. Recently,
Hadfield and Bowden [9] estimate the scene flow by modeling
moving points in 3D using a particle filter, reducing the over-
smoothing caused by global regularization. However, this method
requires a lot of computational time since a large number of mo-
tion hypotheses must be generated and tested for each 3D point.

1.2. Our approach

Similar to [8,9], we estimate the scene flow using a pair of
aligned intensity and depth sequences. Although, rather than com-
puting a dense scene flow we get a set of 3D motions by tracking in
the image domain using a coarse-to-fine procedure. The work in
this paper is inspired by that of Devernay et al. [25], in which a
sparse scene flow is derived from 3D trajectories using several
cameras. In our approach, instead of tracking 3D points we use a
Lucas–Kanade framework [13] to solve for a local scene flow using
constraints in intensity and depth data.

Previous works [26,27] solve at the same time for the optical
flow and range flow assuming an orthographic camera, however,
under this approach the estimated depth velocity can not be in-
cluded to constraint the optical flow computation. Instead, we di-
rectly compute a local scene flow by tracking small surface
patches in intensity and depth data. As in [20], we assume that
the scene is composed of independently, but rigidly, moving 3D
parts avoiding the use of smoothness constraints in 2D. Thus, con-
sidering a 3D local rigidity of the scene, we model the image flow
induced by the surface motion by using a rigid translation flow mod-
el. This model allows the constraint of the 3D motion field in the
image domain. In this way we are able to solve for the scene flow
that best explains the observed intensity and depth data for each
interest region on the image.

Previous Lucas–Kanade methods use a 2D warping [13]. Unlike
them, we model the image flow as a function of the 3D motion vec-
tor with help from a depth sensor, improving the accuracy of the
optical flow and solving directly for the scene flow. Besides, with-
out expecting a planar surface patch as in surfels based techniques
[24,25], this motion model allows the constraint of scene flow in
intensity and depth images. In order to treat with large displace-
ment the scene flow can be propagated in a coarse-to-fine strategy.

Incorporating depth data our approach improves tracking preci-
sion in the image domain that allows at the same time the compu-
tation of the scene flow. Because we solve directly for the scene
flow by performing tracking in the image domain, this method
can be directly used to extract accurate 2D or 3D trajectories, ini-
tialize/refine other scene flow methods or define scene flow based
descriptors for motion analysis.

1.3. Paper structure

The remainder of this paper is organized as follows. We begin in
Section 2 with the definition of a motion model that allows the
constraint of the 3D motion vector in the image domain. In
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