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a b s t r a c t

Forensic identification is the task of determining whether or not observed evidence arose from a known
source. It is useful to associate probabilities with identification/exclusion opinions, either for presenta-
tion in court or to evaluate the discriminative power of a given set of attributes. At present, in most
forensic domains outside of DNA evidence, it is not possible to make such a statement since the
necessary probability distributions cannot be computed with reasonable accuracy, although the
probabilistic approach itself is well-understood. In principle, it involves determining a likelihood ratio
(LR) – the ratio of the joint probability of the evidence and source under the identification hypothesis
(that the evidence came from the source) and under the exclusion hypothesis (that the evidence did not
arise from the source). Evaluating the joint probability is computationally intractable when the number
of variables is even moderately large. It is also statistically infeasible since the number of parameters to
be determined from the data is exponential with the number of variables. An approximate method is to
replace the joint probability by another probability: that of distance (or similarity) between evidence and
object under the two hypotheses. While this reduces to linear complexity with the number of variables, it
is an oversimplification leading to errors. We consider a third method which decomposes the LR into a
product of two factors, one based on distance and the other on rarity. This result, which is exact for the
univariate Gaussian case, has an intuitive appeal – forensic examiners assign higher importance to rare
feature values in the evidence and low importance to common feature values. We generalize this
approach to more complex data such as vectors and graphs, which makes LR estimation computationally
tractable. Empirical evaluations of the three methods, done with several data types (continuous features,
binary features, multinomial and graph) and several modalities (handwriting with binary features,
handwriting with multinomial features and footwear impressions with continuous features), show that
the distance and rarity method is significantly better than the distance only method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Forensic identification concerns whether observed evidence arose
from a known source. The probabilistic approach is to determine the
likelihood ratio positive (LR+) [17,2,38,24,29] whose numerator is the
joint probability of the evidence and source under the null hypothesis
that the evidence arises from the source and the denominator is the
joint probability under the alternate hypothesis that the evidence does
not arise from the object. The evidence is deemed to have arisen from
the source if LRþ 41 and not from the source otherwise.

Determining the joint probability has high data requirements.
Assume that the evidence and object are both characterized by n
binary features, the joint distribution requires 22n probabilities or
parameters. Even for small n this requires extremely large data
sets for estimating parameters. Furthermore in forensic applica-
tions data sets are usually small making the approach infeasible.

A common solution is to use the probability of distance, or
similarity, between the evidence and known instead of the joint
probability [24,33]. The distance based method, which has a
constant number of parameters, is simple to compute but there is
a severe loss of information in going from a high-dimensional joint
probability space to a one-dimensional distance space. This paper
considers a third method based on a result of Lindley [21] for
univariate Gaussian samples which combines the probability of
distance with the probability of the mean of evidence and object,
called rarity. Computing rarity exactly has the complexity of 2n still,
for which probabilistic graphical models (e.g., Bayesian networks)
and mixture models are used to further simplify the computation.

1.1. Forensic evidence

Several forensic modalities can benefit from a characterisation
of uncertainty, particularly impression evidence where “objects
or materials retain characteristics of other objects or materials
impressed against them”, e.g., latent fingerprints, footwear and
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tire impressions [5], tool marks and bite marks. Handwriting can
also be regarded as impression evidence.

The characteristics need an appropriate representation for both
human and computer processing. Examples of such representations
are feature vectors or graphs providing a structural description.
Features in forensics are usually further divided into class and indivi-
dual characteristics. Examples of class characteristics in the case of
footwear evidence are those that result from themass machine manu-
facturing and can associate the evidence only to one class, whereas
individual characteristics can potentially associate the evidence to a
specific instance of that class. Another example from latent print
analysis where class characteristics are type 1 detail (whorls, arches,
etc.) and individualizing characteristics are type 2 detail (minutiae).

1.2. Organization of paper

The rest of the paper is structured as follows. Section 2 defines the
likelihood ratio (LR) under the identification scenario, Lindley's result
and its generalization and the computational complexities of the three
methods. Sections 3–5 discuss the application of the three methods to
data with feature distributions that are continuous, discrete and
graphs, respectively. A theoretical analysis using K-L divergence is
given in Section 6. Concluding remarks are made in Section 7.

2. Likelihood ratio

Let S¼ fsig be a set of sources. They correspond to, say, footwear
outsoles. We denote the evidence by E, and the object by O. Let
o represent an object drawn from a source si, e.g., impression of
a known footwear. Let e represent the evidence drawn from a
source sj, e.g., a crime scene impression. The task is to determine
the odds of whether o and e came from the same or different source.

We can state two opposing hypotheses:

h0 : o and e are from the same source (i¼ j); and
h1 : o and e are from different sources ðia jÞ, which are the

identification and exclusion hypotheses of forensics; some
forensic statistics literature also refers to them as prosecution
and defense hypotheses [2].

We can define two joint probability distributions Pðo; ejh0Þ and
Pðo; ejh1Þ which specify as to how often each instance of the object
and evidence occur together when they belong to the same source
or to different sources. The relative strengths of evidence support-
ing the two hypotheses is quantified by the likelihood ratio

LRJ ¼ LRðo; eÞ ¼ Pðo; ejh0Þ
Pðo; ejh1Þ

: ð1Þ

The corresponding log-likelihood ratio, LLRðo; eÞ ¼ ln Pðo; ejh0Þ�
ln Pðo; ejh1Þ, has representational advantages: its sign is indicative
of same or different source, it has a smaller range than LR, and
additivity of contributions of independent features.1

It is useful to convert LRs into probabilities of identification and
exclusion using a Bayesian formulation.2 Let the prior probabilities
of the hypotheses be Pðh0Þ and Pðh1Þ with Pðh0Þ þ Pðh1Þ ¼ 1.

Defining the prior odds as Oprior ¼ Pðh0Þ=Pðh1Þ, we can express
the prior probability of the same source as

Pðh0Þ ¼Oprior=ð1þ OpriorÞ: ð2Þ

The prior odds can be converted into posterior odds as

Oposterior ¼
Pðh0jo; eÞ
Pðh1jo; eÞ

¼ Oprior � LRðo; eÞ: ð3Þ

Thus we can write the posterior probability of the same source as
Pðh0jo; eÞ ¼Oposterior=ð1þ OposteriorÞ. The particular case of equal
priors is of interest in forensics, as opinion without prior bias, i.
e., no information other than the evidence is used. In this case we
get a simple form for the probability of identification as

Pðh0jo; eÞ ¼ LRðo; eÞ
1þ LRðo; eÞ ¼

expðLLRðo; eÞÞ
1þ expðLLRðo; eÞÞ: ð4Þ

The probability of exclusion is Pðh1jo; eÞ ¼ 1�Pðh0jo; eÞ ¼ 1=½1þ
LRðo; eÞ� ¼ 1=½1þ eLLRðo;eÞ�.

Thus the key to determining the probability of identification is
to determine LR defined by Eq. (1), which in turn requires the
distributions Pðo; ejhiÞ ði¼ 0;1Þ, defined over all possible values of
objects and their evidential forms. If o and e are n-dimensional
multinomial vectors with each feature taking K possible values,
then 2K2n parameters are needed to specify the joint distribution.
Determining these distributions is computationally and statisti-
cally infeasible. Computationally, kernel density estimation [3] and
finite mixture models [23] have been proposed, but they have
limitations as well.3 More important is the statistical limitation of
having a sufficient number of samples for so many parameters.
Today, objects and evidence can be represented by ever finer
features due to higher camera resolution and automatic feature
extraction methods and their possible evidential forms are infinite.

One method of simplification is to use a (dis)similarity function
between object and evidence. The approach is to define dðo; eÞ as a
scalar distance between object and evidence and define another
likelihood ratio as follows:

LRD ¼ Pðdðo; eÞjh0Þ
Pðdðo; eÞjh1Þ

: ð5Þ

The number of parameters needed to evaluate LRD is constant, or O
(1), and is independent of the number of features n. Due to its
simplicity, this method has been proposed for fingerprint identi-
fication [24], handwriting analysis [32], pharmaceutical tablet
comparison [6], etc.

For certain feature spaces and distance measures, e.g., contin-
uous features with Euclidean distance, this approach is equivalent
to a kernel method [28]. The scalar distance d is just the magnitude
of the vector difference d. However, because it maps two distribu-
tions of 2n variables each into two scalar distributions there is
severe loss of information (many pairs of o and e can have the
same distance). A natural extension is to use vector difference d,
which quantifies the distribution of both the magnitude and the
orientation of the difference between o and e, giving a much fine-
grained characterization of the difference between o and e. While
this likelihood ratio LRVD provides the simplification of mapping
two distributions of 2n variables each into two distributions of n
variables each, there is still a loss of information in the many to
one mappings.

1 In performing LLR additions, since LR values in the interval ð1;1Þ convert to
positive LLRs and LR values in the interval (0,1) convert to negative LLRs, the
precisions of LRso1 must be high, otherwise the ranges of positive and negative
LLRs will not be symmetric.

2 There has been recent discussion in the legal community regarding whether
the terms identification and individualization, commonly used in expressing
forensic opinion, are appropriate in view of the fact that there is uncertainty in
identification [26]. In response the forensic community has proposed that prob-
abilities can be associated with identification, and that when the probability
approaches 1 it is referred to as individualization [39].

3 Kernel density estimation is expensive in memory as it needs to store the
entire training data set, and the cost of evaluating the density grows linearly with
size of data set. For mixture models, an important issue is to select the number of
components, also, the training algorithm such as EM may converge to a local
optimum or the boundary of the parameter space [18].
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