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a b s t r a c t

This paper presents a new approach to multi-class thresholding-based segmentation. It considerably
improves existing thresholding methods by efficiently modeling non-Gaussian and multi-modal class-
conditional distributions using mixtures of generalized Gaussian distributions (MoGG). The proposed
approach seamlessly: (1) extends the standard Otsu's method to arbitrary numbers of thresholds and
(2) extends the Kittler and Illingworth minimum error thresholding to non-Gaussian and multi-modal
class-conditional data. MoGGs enable efficient representation of heavy-tailed data and multi-modal
histograms with flat or sharply shaped peaks. Experiments on synthetic data and real-world image
segmentation show the performance of the proposed approach with comparison to recent state-of-the-
art techniques.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Thresholding-based image segmentation is a well-known tech-
nique that is used in a broad range of applications, such as change
detection [20], object recognition [3,34] and document image
analysis [26], to name a few. Image thresholding aims at building
a partition of an image into K classes, C1;…;CK , which are
separated by K�1 thresholds T1;…; TK�1. In case of K¼2, the
image is segmented into foreground and background regions.
In case of K42, the image is segmented into K distinct regions. In
most of existing thresholding methods, the parameter K is generally
given and it corresponds to the number of histogram modes [27].
Comparative studies about existing thresholding techniques applied
to image segmentation can be found in [10,24,27,32].

Among the most popular methods for image thresholding are
the standard Otsu's method [22] and Kittler and Illingworth's
method [14]. While the former uses inter-class separability to
calculate optimal thresholds between classes, the latter is based on
the minimization of Bayes classification error, where each class is
modeled by a Gaussian distribution. Both methods, however,
assume a uni-modal shape for classes and use sample mean and
standard deviation (i.e., the parameters of a Gaussian) to approx-
imate their distributions. In [12,32], the authors established the
relationship between the two methods, where these parameters

can be obtained in either methods using maximum likelihood
estimation of a Gaussian model for each class. Entropy and relative
entropy can also be used to derive good thresholds for image
segmentation when the distribution of classes is Gaussian [5,6,25].
For example, Jiulun and Winxin [12] gave a relative-entropy
interpretation for the minimum error thresholding (MET) [14,19].
In that work, the Kullback–Leibler divergence [15] is used to
measure the discrepancy between histograms of a source image
and a mixture of two Gaussians. Recently, Xue and Titterington
[30] proposed a thresholding method where class data are
modeled by Laplacian distributions. They showed that the
obtained thresholds offer better separation of classes when their
distributions are skewed, heavy-tailed or contaminated by out-
liers. Indeed, the location and dispersion parameters of the
Laplacian distribution are the median and the absolute deviation
from the median, which are more robust to outliers compared to
the sample mean and standard deviation, respectively [11].

Previous methods for image thresholding were basically
devised to separate classes that are unimodal [27]. Therefore, they
are not adapted to multi-modal class segmentation. For instance,
in many segmentation problems (e.g., medical images, and remote
sensing), one might want to separate the image foreground from a
background region, each of which may have a multi-modal
distribution. Another limitation for the standard methods [14]
and [22], and as pointed out in [30], lies in the assumption that
class data are Gaussian. In several image examples, one can find
histogram modes that are skewed, sharply peaked or heavy tailed,
making the assumption of Gaussian-distributed classes not realis-
tic. Recently, researchers have used other distribution types to
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provide better image thresholding methods by modeling histo-
gram classes using, for instance, Poisson [23], generalized Gaus-
sian [2,7,8], skew-normal [31] and Rayleigh [29] distributions.
However, these approaches are also built on the assumption that
all classes are unimodal. Worth mentioning is the parallel trend of
using mixture methods for segmentation (ex. [1,21,35,36]), where
data are clustered to classes determined by the components of a
learned mixture model. For such works, the number of classes
(which correspond to the number of mixture components) can be
estimated using information-theoretic criteria such as AIC, BIC,
MML, etc. [18]. This paper deals with a different problem which
consists of finding thresholds between classes with distributions
that can be constituted of arbitrary numbers of (non-Gaussian)
histogram modes. Thus, contrary to [1,21], the number of classes K
will not necessarily correspond to the number histogram modes.

In this paper, we propose a new thresholding approach that
performs segmentation for multi-modal classes with arbitrarily
shaped modes. We generalize the aforementioned state-of-art techni-
ques, based on using single probability density functions (pdf's),

to mixtures of generalized Gaussian distributions (MoGG's). The
Generalized Gaussian Distributions (GGD) is a generalization of the
Laplacian and the normal distributions in that it has an additional
degree of freedom that controls its kurtosis. Therefore, histogram
modes, ranging from sharply peaked to flat ones, can be accurately
represented using this model. Furthermore, skewed and multi-modal
classes are accurately represented using mixtures of GGDs. We
propose an objective function that finds optimal thresholds for
multi-modal classes of data. It also extends easily to arbitrary numbers
of classes (K42) with reasonable computational time. Experiments
on synthetic data, as well as real-world image segmentation, show the
performance of the proposed approach.

This paper is organized as follows: Section 2 presents state-of-
the-art theory for thresholding techniques. In Section 3 we outline
our proposed approach for image thresholding. Experimental
results are given in Section 4. We end the paper with a conclusion
and some future work perspectives.

2. General formulation of the Otsu's method (case K¼2)

Let X ¼ fx1; x2;…; xNg be the gray levels of the pixels of an
image I of size N¼H �W; H and W being the height and the
width of the image. Let t¼ ðt1; t2;…; tK�1Þ be a set of thresholds
that partitions an image into K classes. First we consider the
simple case of K¼2. The most general case of K42 will be
elaborated later in this paper. In the case of K¼2, one threshold
t yields two classes C1ðtÞ ¼ fx : 0rxrtg and C2ðtÞ ¼ fx : tþ1r
xrTg, where T is the maximum gray level. Finally, we denote by h
(x) the histogram frequency of the gray level x, where ∑T

x ¼ 0hðxÞ ¼ 1.
The resulting histogram in this case (K¼2) is bimodal, as shown in
Fig. 1. Otsu's method [22] determines the optimal threshold t using
discriminant analysis, by maximizing inter-class variation, or equiva-
lently minimizing intra-class variation.

A generalized formula of the Otsu's method for K¼2 can be
defined as follows (see refs. [10,14,22,27,30,32]):

s2BðtÞ ¼ arg min
t

fω1ðtÞV1ðtÞþω2ðtÞV2ðtÞg; ð1Þ

where, we have

ω1ðtÞ ¼ ∑
t

x ¼ 0
hðxÞ

ω2ðtÞ ¼ ∑
T

x ¼ tþ1
hðxÞ ¼ 1�ω1ðtÞ

8>>>><
>>>>:

; ð2Þ

and

V1ðtÞ ¼
1

ω1ðtÞ
∑
t

x ¼ 0
hðxÞ‖ðx�m1ðtÞ‖β

V2ðtÞ ¼
1

ω2ðtÞ
∑
T

x ¼ tþ1
hðxÞ‖ðx�m2ðtÞ‖β

8>>>><
>>>>:

; ð3Þ
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Fig. 1. Bimodal histogram ðK ¼ 2Þ.
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Fig. 2. Multimodal histogram ðK ¼ 3Þ.
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Fig. 3. Different shapes of the GGD distribution as a function of the parameter β (m=0,s=1).
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