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a b s t r a c t

Texture analysis based on textons is extended by introducing a method for computing textons of
arbitrary order. First-, second- and third-order textons are applied to classify screening mammograms as
to indicate a low or high risk of breast cancer. First-order textons are found to provide better estimates of
breast cancer risk than other orders on their own but the combination of first- and second-order textons
outperforms first-order textons alone and other combinations of two orders. Combining all three orders
of textons does not improve classification. This example indicates that including higher-order textons has
the potential to improve classification performance.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The word texton was coined by Julesz to refer to local features
that allow human perception to distinguish between iso-second-
order textures [13]. The word texton was later re-invented to refer
to co-occurrences of filter outputs [5,17,27]. A common realization
of this idea is to create a feature vector comprising the outputs at
that pixel of a filter bank for each pixel in an image and to search
for clusters in the resulting feature space. The clusters are called
textons. Each pixel in the image may then be mapped to the texton
closest to the representation of the pixel in the feature space. Thus
the image is replaced by a texton map. The histogram of the texton
classes over the full image can be used to represent or classify the
image. In order to incorporate the spatial distribution of the texton
map, a natural extension is to study the spatial co-occurrence of
textons over the image. Schmid [27] computed “generic descrip-
tors” (textons) based on a “Gabor-like” filter bank and considered
spatial frequency clusters. This second-order texton analysis
(though not referred to as such) was found to improve image
retrieval. However, Varma and Zisserman [30] found that orienta-
tion co-occurrence statistics did not improve texture classification.

The motivation and theoretical basis for standard textons (first-
order textons) appears in Leung and Malik [17]. These foundations

are built on models for human perception of texture in images.
Combinations of groves, spots, ridges, and hollows are thought to
be perceived as a finite number of textures up to equivalence
under changes of scale, orientation and lighting. This motivated
the idea of representing pixels by vectors of texture primitives and
then clustering these vectors to determine a finite number of
representative patterns – textons. The fact that local information
(N�N neighborhoods with small N) is able to distinguish texture
patterns on a larger scale is demonstrated in Varma and Zisserman
[29]. By taking the image as a discretization of a differentiable
surface, the first and second partial derivatives at a point suffice to
classify all quadratic surfaces, for example. Since three points
allow estimates of both first and second partial derivatives, a
3�3 neighborhood encompasses all the information needed to
assign the best quadratic approximation of the image at the
central point, regardless of the scale at which the quadratic surface
varies with respect to the pixel size. By Taylor's theorem, higher
order polynomial approximations require higher-order derivatives,
which in the discrete setting of image analysis translates to larger
neighborhoods to allow numerical estimates of the required
derivatives. Theoretically, there is no limit as to how well the
surface may be approximated by considering ever higher-order
derivatives and hence ever larger neighborhoods. However, such
computations are not practical. First, numerical estimates of high-
order derivatives are notoriously unstable. Second, a neighbor-
hood of diameter N results in a feature space of the order of N2 and
so becomes cumbersome for large N. Third, the assumption that
the image intensity surface is well approximated by a highly
differentiable function is often not valid in images where texture
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is important. (As an aside, projection images such as the mammo-
grams considered in this paper are inherently represented by
discontinuous intensity surfaces.) For these reasons, a more
practical approach to capture texture beyond simple low order
approximations is to consider patterns of these local low order
approximations. Second-order textons capture patterns of first-
order textons. As an example, the intersection of two ridges would
require a fourth-order polynomial approximation and thus
requires a single neighborhood of size 5�5. However, the pattern
of quadratic approximations on the nine 3�3 neighborhoods
within the 5�5 patch also determines this structure as a combi-
nation of local quadratic approximations. The labels associated
with these local quadratic structures form the second-order
feature vector on which the second-order texton is based. The
advantages are that only low-order derivatives (which are numeri-
cally more stable) are used, low dimensional feature spaces are
considered (9 dimensional instead of 25 dimensional) and the
model assumes only a twice differentiable function instead of a
four-times differentiable function.

Although the theoretical basis for the method may be
explained in terms of differentiable models of the intensity sur-
face, derivatives are not computed explicitly and polynomial
models are not constructed. The implementation relies solely on
the patterns of local intensity values.

Here a general notion of higher-order textons is introduced.
Second-order textons are textons defined on texton maps and
third-order textons are textons defined on second-order texton
maps and so on. In general, applying filters to texton maps is
meaningless since the values comprising the texton map are labels
and so carry no rank information. However, higher-order textons
do make sense if the process of extracting the features used to
construct textons does not involve arithmetic. The N�N neighbor-
hood intensity features considered by Varma and Zisserman [29]
do not require arithmetic, for example. In this method, each pixel
in an image is represented by the vector of image intensity values
in the N�N neighborhood of the pixel. The resulting feature
vector may be viewed as the output of applying N2

filters, each
comprising an N�N patch of zeros with a single entry of 1. Thus
this N�N neighborhood method is an example of the general filter
bank approach to textons described above. But since this filtering
step involves no arithmetic, this version of texton analysis may be
applied to the texton map and, iteratively, to higher-order texton
maps. Other examples of texture features that do not require
arithmetic include features based on gray scale dependence
matrices also known as coocurrence matrices [8] and run length
statistics [6]. The restriction against the use of arithmetic only
applies to second- and higher-order textons. Any method for
constructing textons may be used to arrive at the first-order
texton map.

Our primary interest in texture analysis lies in computer-aided
interpretation of digital mammograms, and in particular, deter-
mining the risk of breast cancer based on screening mammo-
grams. Accordingly, the use of second- and third-order textons is
tested in the context of automatically classifying screening mam-
mograms as to indicate a high or low risk of breast cancer. This
classification is important as strategies for early detection of breast
cancer depend on accurate assessment of risk.

The main mammographic indicator of breast cancer is the
amount and distribution of the dense tissue. In addition to the
density (or its surrogate, intensity), texture is thought to provide
information relevant to risk assessment [32]. Several studies have
appeared on the use of texture for classifying risk [25,7,24]. One
problem in studying texture in screening mammograms is that the
relationship between total attenuation of the x-ray beam and
image intensity is non-linear. Hence the contribution to intensity
of small components (such as ducts) results in an intensity signal

that varies according to the local intensity of the background. Thus
results reporting a positive contribution to risk assessment based
on texture may be due to the indirect measurement of density. To
avoid this problem, processing steps reported previously [20] were
used in this study to remove the local intensity variation as well as
the local intensity mean.

Any study assessing cancer risk suffers from the problem of
identifying those “at risk”. A definitive statement is not possible as
subjects free of cancer at the end of a study may still be at risk of
developing cancer at a later time. In the absence of a gold
standard, various surrogates have been developed by researchers:
Wolfe [31,32] used parenchymal pattern classes to quantify risk,
the American College or Radiology [1] introduced BI-RADS classes
shifting the focus from structure to density patterns. In addition,
genetic markers such as mutations in BRAC1/2 have been used in
this context [11,12,18]. All of these criteria are reasonable but none
measure risk directly.

2. Higher-order textons

A general framework for higher-order textons is as follows. Let

X0 ¼ fX0
1;X

0
2;…;X0

qg denote a collection of images or a single image

(q¼1) and let pi;j denote pixel j in image X0
i . Let f

1ði; jÞ denote the
feature vector of length L1 obtained by computing L1 features

associated with pixel pi;j. The components of f 1ði; jÞmay be outputs
from linear filters or other descriptors of local phenomena. There
is no restriction to the method of feature extraction used in this

step. The collection of f 1ði; jÞ over i and j is viewed as a set of points
in an L1-dimensional feature space. A clustering method is applied

to the feature space to identify a set of clusters T1
1; T

1
2;…; T1

n1
. These

clusters are the first-order textons. For each i, a new image X1
i is

formed by assigning label sA1;2;…;n1 to pixel pi;j where s is the

index of the cluster closest to f 1ði; jÞ in the feature space using an

appropriate norm (usually the Euclidean distance). The images X1
i

are called the first-order texton maps.
Second-order textons are obtained by constructing local feature

vectors f 2ði; jÞ of length L2 on X1 ¼ fX1
1;X

1
2;…;X1

qg. The features

comprising the components of f 2ði; jÞ must not involve arithmetic
operations. Except for this key point, the remaining steps are the
same. Thus, a clustering algorithm (not necessarily the same one
as used for first-order textons) is applied to the L2-dimensional

feature space to form the second-order textons T2
1; T

2
2;…; T2

n2
and

so on (Fig. 1). The number of textons at each level (texton order) is
not necessarily the same. Final representation or classification can
be based on the full collection of textons over all levels or a sub-
collection.

The following toy example shows that two images (in this case
strings) may be indistinguishable by first- and second-order
textons but distinguishable by third-order textons. Consider two
1-dimensional binary images X0 and Y0, each comprising m entries
labeled 1 and the rest labeled 0. Specifically, the distributions of 1s
in X0 is random but in Y0 all the 1s appear separated by exactly two
0s (except the first and last 1). Thus Y ¼ ð‥‥;0;0;0;0;1;
0;0;1;0;0;1;0;0;1;…;0; 0;1;0;0;1;0;0;1;0;0;0;0…Þ. The feature

vector at position i is f ðiÞ ¼ ðf 1ðiÞ; f 2ðiÞÞ, where f 1ðiÞ ¼ Y0ði�1Þ and
f 2ðiÞ ¼ Y0ðiþ1Þ. For string Y0, the feature space obtained by
plotting f(i) for all i appears in Table 1(a). Here A is a large value
that depends on the length of the string. Since the resolution in
the feature space is low, clustering is not quite meaningful, but a

reasonable analog is to accept three clusters T1
1 ¼ ð0;0Þ, T1

2 ¼ ð1;0Þ
and T1

3 ¼ ð0;1Þ. The clusters T1
j , j¼ 1;2;3 are first-order textons.
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