Pattern Recognition 47 (2014) 1485-1493

Contents lists available at ScienceDirect PATTERN
RECOGNITION

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Intrinsic dimension estimation via nearest constrained

subspace classifier

@ CrossMark

Liang Liao*P, Yanning Zhang **, Stephen John Maybank ¢, Zhoufeng Liu®

@ School of Computer Science, Northwestern Polytechnic University, Xi'an, Shaanxi 710129, PR China
b School of Electronics and Information, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China
¢ Department of Computer Science and Information Systems, Birkbeck College, University of London, Bloomsbury, London WCIE 7HX, UK

ARTICLE INFO

ABSTRACT

Article history:

Received 23 November 2012
Received in revised form

6 August 2013

Accepted 15 August 2013
Available online 27 August 2013

Keywords:

Intrinsic dimension estimation
Nearest constrained subspace classifier
Image classification

Sparse representation

We consider the problems of classification and intrinsic dimension estimation on image data. A new
subspace based classifier is proposed for supervised classification or intrinsic dimension estimation. The
distribution of the data in each class is modeled by a union of a finite number of affine subspaces of the
feature space. The affine subspaces have a common dimension, which is assumed to be much less than
the dimension of the feature space. The subspaces are found using regression based on the #p—norm. The
proposed method is a generalisation of classical NN (Nearest Neighbor), NFL (Nearest Feature Line)
classifiers and has a close relationship to NS (Nearest Subspace) classifier. The proposed classifier with an
accurately estimated dimension parameter generally outperforms its competitors in terms of classifica-
tion accuracy. We also propose a fast version of the classifier using a neighborhood representation to
reduce its computational complexity. Experiments on publicly available datasets corroborate these
claims.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of data manifold plays a vital role in pattern
recognition. Briefly speaking, a data manifold is a topological
space which contains the data samples, and which serves as an
ideal geometric description of the data. In this description, all data
points, including the observed and unobserved, lie in a data
manifold, whose dimension is often much lower than the dimen-
sion of the feature space which contains it.

In previous work, the manifold model has been used as a
powerful analytical approximation tool for nonparametric signal
classes such as human face images or handwritten digits [1-3].
If the data manifold is learned, then it can be exploited for
classifier design. The manifold learning usually involves construct-
ing a mapping from the feature space to a lower-dimensional
space that is adapted to the training data and that preserves the
proximity of data points to each other.

There have been many works on manifold learning. For example,
methods such as ISOMAP (ISOmetric Mapping) [4], Hessian Eigen-
maps (also known as HLLE, Hessian Locally Linear Embedding) [5],
LLE (Local Linear Embedding) [6], Maximum Variance Unfolding
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(MVU) [7], Local Tangent Space Alignment (LTSA) [8] and Laplacian
Eigenmap [9] have been introduced. These methods learn a low-
dimensional manifold under the constraint that the proximity
properties of the nearby data are preserved.

We propose a novel supervised classifier framework in which
each class is modeled by a union of a finite number of affine
subspaces. The proposed algorithm is superior to the traditional
classifiers such as NN (Nearest Neighbor), NFL (Nearest Feature
Line, proposed by Li [10]), NS (Nearest Subspace), etc., because the
use of finite affine subspaces allows a more accurate description of
the distribution of the data.

The reminder of this paper is organized as follows. In Section 2,
some background and related works about the classical classifiers
including NN (Nearest Neighbor), NFL (Nearest Feature Line) and NS
(Nearest Subspace) are briefly revisited. In Section 3, the classification
model of NM (Nearest Manifold) and some classifier design princi-
ples are presented. Then, a novel constrained subspace framework
named NCSC and its fast version are proposed in Section 4. Section 5
gives the experimental results on several publicly available datasets.
In Section 6, some concluding remarks are given.

2. Background and related works

We argue that the NN, NFL and NS classifiers can be incorpo-
rated into a unified framework. Before the detailed discussion, let
us first briefly revisit the theoretical background.
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Fig. 1. The distances of a query sample y in NN and NFL to a class (the i-th, as shown), where N;=3. (a) NN and (b) NFL.

2.1. NN and NFL

The NN, NFL and NS classifiers base the classification of a
sample y on the distances measured in the feature space.

For NN and NFL, there exists a convenient geometrical inter-
pretation — given N; training samples in a given class (say, the i-th
class), the distances are obtained as illustrated in Fig. 1 where to
simplify the explanations, we set N;=3.

In Fig. 1a, the distance from y to the i-th class is the minimum
ri(y) of the distances from y to the training samples in the i-th
class. In Fig. 1b, each pair of training samples defines a line. The
distance from y to the i-th class is defined as the minimum r;(y) of
the distances from y to the different lines.

More generally, given the training samples v, ..,v") of the
i-th class, in NN, ri(y) is written as

(V) — ; _y
r,(y)_jE{rE.l.r}N’)Hy v, M

In NFL, r;(y) is defined as

riY) = Min; cpape 1,y 1 Y—AVO 1=V 1. )

22. NS

In NS, the minimum distance r;(y) is the projection distance
fromy to the subspace linearly spanned by all the training samples
in the i-th class.

More specifically, given N; training samples in the i-th class,
define

Vi=p, v 3)

where v}i) e RP is the j-th training sample and D is the feature
dimension.

Note that we assume that the training samples v}”, ...,V}N*’) are
linearly independent. Namely, V; e RP*Ni is a full rank matrix,
satisfying D > N;. Henceforth, unless otherwise stated, we assume
that the given training samples are linearly independent. This
assumption is satisfied in many pattern recognition problems in
which the feature space has a high dimension.

Then, in NS, r;(y) is defined as

ri(y)= min ly—V;a;ll, 4)
a; e RNi
where a; = [a!", ..., """ is the coefficient vector.

If the N; training samples are linearly independent, the spanned
subspace is N;-dimensional.

After the distances from y to K classes are obtained, NN, NFL
and NS, using the same scheme, determine the class of y by

class(y) = arg min ry(y). (5)
iefl,...K)

3. NM: Nearest Manifold

The NM (Nearest Manifold) classifier is a generalization of the
NN, NFL and NS classifiers. It also determines the class of a query
sample based on the minimum distance. In NM, the manifold
associated with a given class is a topological space such that all the
data points (including the observed ones and unobserved ones) of
the class are lying on or near to it. Thus, the manifold dimension is
actually the intrinsic dimension of the dataset and is usually much
less than the dimension of feature space. If a query data sample
is near to a data manifold, then it is assigned to the corres-
ponding class.

3.1. Model

For a given a class, we define its universal dataset to be the
“conceptual” set containing all the observed and unobserved data
of this class. It is assumed that this universal data set forms a
manifold in the feature space, and that the dimension of the
manifold is much less than the dimension of the feature space.

Given K data manifolds denoted by Mjy, ..., M, y is assigned to
the class whose data manifold is the nearest to y. More specifically,
ri(y) is written as follows:

ri(y):zrgia ly—zll,, Vi=1,...,K. (6)

After that, NMC (Nearest Manifold Classifier) uses Eq. (5) to
classify y.

3.2. (lassifier design based on the least distance

Although it is difficult to implement the NM classifier primarily
due to the difficulty of deducing the K data manifolds from the
given training samples, the NM model gives us some clues for
designing a good classifier based on the nearest distance.

Given the training sets for each of K classes, a good classifier
can be obtained by adding new derived points to the training sets.
In NFL, the derived points consist of points on the feature lines of
the class. In NS, the derived points consist of the subspaces
spanned by the training samples of the class. The solution of NM
is to use data manifolds M, ..., Mk to replace the training sets.

From this point of view, NFL and NS are approximations to NM
in that the training sets and the derived points approximate the
data manifolds. But these approximations are not necessarily
the best.

4. Nearest constrained subspace classifier

We propose a novel classifier called the nearest constrained
subspace classifier (NCSC), which generalizes NN, NFL and has a
close relationship to NS. The proposed classifier is formulated as
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