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a b s t r a c t

Several meta-learning techniques for multi-label classification (MLC), such as chaining and stacking, have
already been proposed in the literature, mostly aimed at improving predictive accuracy through the
exploitation of label dependencies. In this paper, we propose another technique of that kind, called
dependent binary relevance (DBR) learning. DBR combines properties of both, chaining and stacking. We
provide a careful analysis of the relationship between these and other techniques, specifically focusing
on the underlying dependency structure and the type of training data used for model construction.
Moreover, we offer an extensive empirical evaluation, in which we compare different techniques on MLC
benchmark data. Our experiments provide evidence for the good performance of DBR in terms of several
evaluation measures that are commonly used in MLC.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-label classification (MLC) is a machine learning problem in
which models are sought that assign a subset of (class) labels to each
object, unlike conventional (single-class) classification that involves
predicting only a single class. Multi-label classification problems are
ubiquitous and naturally occur, for instance, in assigning keywords to
a paper, tags to resources in a social network, objects to images or
emotional expressions to human faces.

There is a considerable amount of literature, in which state-of-
the-art binary or multi-class classification algorithms are adapted
and extended to the setting of MLC, including methods using
decision trees [1], instance-based algorithms [2], neural networks
[3], support vector machines [4], naive Bayes [5], conditional
random fields [6] and boosting [7]. Besides, there is also another
line of research, in which approaches of that kind are completely
put aside; instead, the development of specialized methods that
consider the particularities of multi-label data is advocated.

In general, the problem of multi-label learning is coming with
two fundamental challenges. The first one bears on the computa-
tional complexity of the algorithms. If the number of labels is large,
then a complex approach might not be applicable in practice.
Therefore, the scalability of algorithms is a key issue in this field.
The second problem is related to the very nature of multi-label data.
Not only is the number of classes typically larger than in multi-class

classification tasks, but also each example belongs to a variable-
sized subset of labels simultaneously. Moreover, and perhaps even
more importantly, the labels will normally not occur independent of
each other; instead, there are statistical dependencies between
them. From a learning and prediction point of view, these relation-
ships constitute a promising source of information, in addition to
that coming from the mere description of the objects. Thus, it is
hardly surprising that research on MLC has very much focused on
the design of newmethods that are able to detect—and benefit from
—interdependencies among labels.

In recent years, many papers have analyzed the presence of label
correlations, including theoretical analyses of label dependence in
the context of MLC [8]. In this regard, different types of dependence
have been formally distinguished, such as conditional dependence
[6,9–12] and marginal (unconditional) dependence [3,13,14]. Other
papers are aiming at the exploitation of relations in different sets
of labels, such as pairwise relations [3,4,7,15,16], relations in sets
of different sizes [11,17,18], or relations in the whole set of labels
[10,13,14]. Exploiting label dependence implicates the induction
of complex models. In fact, the more the label combinations are
considered, the more complex the models are. This does not mean
that exploiting pairwise correlations is preferable to exploiting full-
order correlations, since the former may fail to capture the true
dependencies while the latter may not work well if the labels display
complex relations that are difficult to deal with.

This paper proposes dependent binary relevance (DBR) models as
an efficient and effective approach to induce multi-label classifiers
that exploit conditional label dependence. Instead of studying them
in combination with independent classifiers, like in [10], our goal is
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to explore their behavior when used in isolation, extending the
work presented in [19] in which this approach was favorably
compared with several state-of-the-art methods [3,11,13,18]. The
DBR approach is conceived as a natural extension of the simple
binary relevance strategy, which does not allow for exploiting
conditional label dependence. We shall elaborate on the positioning
of our approach more closely in Section 3, where we argue that this
approach combines properties of two other meta-techniques for
MLC, namely chaining [11] and stacking [14], and that it fills a “gap”
within the spectrum of methods that have been devised so far.

A key contribution of this paper is a deep analysis of the
properties of dependent binary models, in which we characterize
those conditions under which they should work well in practice.
These models require label estimations (produced by any multi-
label classifier) at prediction time. This issue is analyzed through-
out the paper, concluding that the more reliable these estimations
are, the better the overall performance becomes.

Another contribution of this work is to present a comprehen-
sive study of methods based on chaining [11] and stacking [14]
strategies. Our goal is to analyze these two approaches, which
are closely connected, and to study those factors that have an
influence on their performance. A key distinction between both
approaches is the type of training data they rely on, which in turn
has a decisive impact on the kind of label dependence captured.

The rest of the paper is organized as follows. The next section
introduces multi-label classification in a more formal way. Stack-
ing and chaining methods are reviewed in Section 3. Section 4 is
devoted to the new DBR technique; we describe this approach
formally and provide a detailed analysis of its properties. Finally,
experimental results are reported in Section 5, before concluding
the paper in Section 6.

2. Multi-label classification

Before describing some previous approaches to tackle multi-
label classification, we present this learning task in a more formal
way. The point of departure is a finite and non-empty set of labels
L¼ fℓ1;ℓ2;…;ℓmg and a training set S¼ fðx1; y1Þ;…; ðxn; ynÞg. The
elements of this set are supposed to be independently and
randomly drawn according to an unknown probability distribution
PðX;YÞ on X � Y, where X and Y are the input and the output
space respectively. The former is the space of the object descrip-
tions (instances), whereas the latter is given by the power set
PðLÞ of L. To ease notation, we define yi as a binary vector
yi ¼ ðyi;1; yi;2;…; yi;mÞ in which yi;j ¼ 1 indicates the presence (rele-
vance) and yi;j ¼ 0 the absence (irrelevance) of ℓj in the labeling of
xi. Using this convention, the output space can also be defined as
Y ¼ f0;1gm. The goal in MLC is to induce from S a hypothesis h :
X⟶Y that correctly predicts the subset of relevant labels for
unlabeled query instances x.

The most straightforward and arguably simplest approach to
tackle multi-label classification is binary relevance (BR). The BR
strategy reduces a given multi-label problem with m labels to
m binary classification problems. More precisely, m hypotheses
h1;h2;…;hm are induced, each of them being responsible for
predicting the relevance of one label, using just X as the input
space:

hj : X⟶f0;1g: ð1Þ
In this way, the labels are predicted independent of each other and
no label dependencies are taken into account. Yet, despite its
inability to exploit any label dependencies, the BR algorithm also
exhibits several advantages: (i) each binary learning method can
be used as base learner, (ii) it has linear complexity with respect to
the number of labels and (iii) it can be easily parallelized.

In spite of its simplicity, the BR method obtains competitive
results in benchmark datasets whenever being applied on top of a
state-of-the-art base learner with a proper procedure for tuning
parameters. Interestingly, it has been shown theoretically and
empirically that BR performs quite strong in terms of decompo-
sable loss functions [9]. This behavior can be explained by study-
ing BR from a probabilistic point of view. Given that each binary
model hj is able to estimate PðyjjxÞ, BR is well-suited for every
loss function whose risk minimizer can be expressed in terms
of marginal distributions of labels. Since the classifier used for
learning hj commonly optimizes its accuracy, the whole BR model
minimizes the Hamming loss1:

HammingLossðy;hðxÞÞ ¼ 1
m

∑
m

i ¼ 1
1yiahiðxÞU: ð2Þ

This measure averages the standard 0/1 classification error over the
m labels and hence corresponds to the proportion of labels whose
relevance is incorrectly predicted. Besides, if an appropriate base
learner is employed, then BR is also able to optimize all other macro-
average label-based metrics, such as the macro-F1 measure [20].

On the other hand, the decomposition approach followed by BR
affects its performance for those loss functions whose minimiza-
tion requires an estimation of the joint distribution. Examples
of these measures are micro-average metrics and Subset 0/1 loss,
which looks if the predicted and relevant label subsets are equal or
not:

Subset0=1ðy;hðxÞÞ ¼1yahðxÞU: ð3Þ
In these cases, it is necessary to develop algorithms which are
able to estimate the joint label probability distributions to obtain
predictions that minimize this sort of metrics. Dembczyński et al.
[8,21] present a formal probabilistic analysis of multi-label classi-
fication, studying the connection between risk minimization and
loss functions.

3. Modeling label dependence

The arguably most natural way to capture label dependencies is
to learn classifier models that condition the prediction of a label yi
not only on the object features x but also on some of the other
labels yj. This idea of conditioning can be realized in different
ways. In particular, the following distinctions can be made:

(i) Full vs. partial conditioning: The prediction of yi can be condi-
tioned on all other labels fy1;…; yi�1; yiþ1;…; ymg or only on a
subset of these labels. The most “sparse” conditioning scheme
among those that capture full dependence between labels is a
sequential structure: yi is conditioned on fy1;…; yi�1g. This
structure, which constitutes the core of the idea of classifier
chains (to be discussed further below), can be motivated by the
product rule of probability [9]:

PðyjxÞ ¼ ∏
m

i ¼ 1
Pðyijx; y1;…; yi�1Þ ð4Þ

(ii) True vs. predicted label information: For training the predictor
of yi, the other labels yj are available in the training data and,
therefore, can in principle be used for learning this predictor.
Alternatively, the model for yi can be trained on the estima-
tions ŷj produced by the other predictors.

1 The expression 1pU evaluates to 1 if the predicate p is true, and to 0
otherwise.
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