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a b s t r a c t

The structural resemblance among several existing classifiers has motivated us to investigate their
underlying relationships. By exploring into the mapping solutions of these classifiers, we found that they
can be linked by simple feature data scaling. In other words, the key to these relationships lies upon how
the replica of feature data are being scaled. This finding leads us directly to an exploration of novel
classifiers beyond existing settings. Based on an extensive empirical evaluation, we show that the
proposed formulation facilitates a tuning capability beyond existing settings for classifier generalization.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Pattern classification plays an important role in many decision
processes such as biometric authentication, medical diagnosis,
fault diagnosis, financial forecast, and data mining [13,20].
Although the field has been widely explored with many useful
classification methods available, the quest towards a good general-
ization or predictivity performance given the limited amount of
training data remains a topic of interest [8,42]. Among those
existing methods which address the issue of classifier general-
ization, methods based on the receiver operating characteristic
(ROC) performance has received considerable attention over
recent years. A key reason to this attention could be attributed
to the provision of an overview interpretation over all possible
decision threshold values by the ROC curves. It has been argued
that when the decision threshold and related decision parameters
are not well defined, the ROC offers a relevant tool for assessment
of the overall performance of a classifier (see e.g., [11,14,27,32]).
While the ROC provides a range of performance values [1], the
single valued area under the ROC curve (AUC) becomes a natural
choice for overall classifier assessment [6,10]. It follows from [18]
that AUC is linearly related to the average of the Bayes correct
rates over all possible values of the classification threshold.
This observation, perhaps, explains to a certain extend the rela-
tively good generalization property of AUC based methods.

Capitalized on a linear parametric model with normalization of
data and matching of a link-loss functional pair in optimization,
the quadratic function has recently been shown to provide a
relevant approximation to the step loss function in AUC optimiza-
tion [41]. Particularly, the solution of the classifier's parameters
with respect to AUC optimization can be expressed in closed-form.
In view of the structural resemblance of this AUC solution with
several well-known classifiers, this work investigates into the
underlying data mapping of these classifiers and finds that they
are related by simple feature data scaling. This finding leads us
directly to an exploration of novel classifiers which adopt different
scaling factors beyond existing frameworks.

We shall capitalize on the optimization tractability advantage
of linear parametric models in developing the relationships among
these classifiers. While noting that embedding of nonlinearities
such as kernels and basis functions into linear regression models
can widen the scope of applications, we shall explore a random
projection network which has been shown to possess universal
approximation capability [23] in this paper.

The main contributions of this paper are as follows:
(i) Establishment of relationships among several binary classifiers
via a framework of scaling and translational space thereby gaining
insights into classifier learning from data perspective. (ii) Explora-
tion of a random projection network for such classifier learning.
(iii) Proposal of novel classifiers which exploit the established
relationships. (iv) Extensive experiments to observe the impact of
these classifiers on several performance measures. Since the
projection network can be constructed using various activation
functions and hidden layer structures such as echoed hidden
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neurons [24], this study serves as a benchmark for further
generalization related explorations.

The paper is organized as follows. In the following Section 2, a
brief review of classification based linear estimation methods is
presented with several commonly adopted performance measures.
Subsequently in Section 3, a data transformation perspective is
presented and this view has been utilized to link up several binary
classifiers. Capitalized on the established relationships, Section 4
proposes a set of novel classifiers for our experimentation. Section
5 shows the results of our empirical study and presents our
observations. Finally some concluding remarks are given in
Section 6.

2. Preliminaries

2.1. Prediction and classification

Given a learning set consisting of m examples ðxi; yiÞ,
i¼ 1;…;m, where xiARd denotes the ith feature sample, and
yiAf0;1g denotes the corresponding indicator or target label. The
value yi can be viewed as the class associated with xi. Based on the
given feature sample as input, a learned predictor outputs a
corresponding value related to target prediction.

For binary classification, our goal is to determine a predictor g
and a threshold τ such that a correct class prediction can be
obtained. An ideal classifier is such that LðgðxiÞÞ ¼ yi (see (1)) for all
i¼ 1;2;…;m, which relates each xi to its target label yi. In this
paper, we consider the predictor g to be a linear projection model.
We shall determine a suitable ĝ , based on the given m examples,
via some learning criteria such as the sum of squared errors, total
error rate and the area under the ROC curve.

With this predictor ĝ , which can be normalized to within ½0;1�,
we then seek to find a threshold τ which is a number between
0 and 1 and use it to determine the class of an unseen test data xu
in the following way:

LðĝðxuÞÞ ¼
1; ĝðxuÞZτ;
0 else:

(
ð1Þ

2.2. Linear projection model

Suppose we have a projection model for predictor g which can
be expressed in linear parametric form given by

gðα; xÞ ¼ ∑
D

j ¼ 1
αjpjðxÞ ¼ pðxÞTα; ð2Þ

where each term pjðxÞ is an element of the column vector pðxÞ that
maps the input vector xARd into a feature space RD (for example,
pjðxÞ can be a random projection model or a multivariate poly-
nomial of some fixed order), and αARD corresponds to a vector of
weighting coefficients to be estimated. Here, we note that by
incorporating a nonlinear mapping of p : Rd-RD, the linear
parametric model extends its capability to map nonlinear input-
output spaces.

A good example of linear projection model is the random
projection network given by

gðα; xÞ ¼ ½ϕðwT
1xþb1Þ;…;ϕðwT

DxþbDÞ�α¼ϕðWxþbÞTα; ð3Þ
where ϕ is a nonlinear activation such as a sigmoid function,
WARD�d is a randomweight matrix, αARD is the parameter to be
estimated, and bARD is a bias term. This random projection
network is analogous to the single-hidden-layer feedforward net-
work as seen in [22] except that we consider only a single output
neuron in this work for binary classification applications.

It has been shown in [23] that a random projection network
with arbitrarily number of hidden neurons and non-constant
activation function possesses both approximation and classifica-
tion capability. In view of its wide application potential, we shall
adopt this random projection network (gðα; xÞ ¼ pðxÞTα where
pðxÞ ¼ϕðWxþbÞ) with a sigmoid function for ϕ.

2.3. Some common performance measures

In this subsection, we include a table of common performance
measures related to our classification task. To simplify our nota-
tion, we shall indicate a superscript þ or � on the variable x
according to whether it belongs to class-1 (positive class) and
class-0 (negative class), respectively. Among the m learning
samples, suppose the samples xþ

i ; i¼ 1;2;…;mþ , belong to the
positive class while samples x�

j ; j¼ 1;2;…;m� , belong to the
negative class. In other words, mþ is the number of xi with
yi ¼ 1 (ground truth for size of positive class) and m� is the
number of xi with yi¼0 (ground truth for size of negative class).

Suppose a predictor g is chosen, we can vary the threshold τ to
classify the samples into positive class or negative class. Based on
this set of learning examples, we calculate the following numbers
for each threshold τ in (1):

tp¼ ‘number of xi with yi ¼ 1 and LðgðxiÞÞ ¼ 1’ ðtrue positiveÞ
fp¼ ‘number of xi with yi ¼ 0 but LðgðxiÞÞ ¼ 1’ ðfalse positiveÞ
fn¼ ‘number of xi with yi ¼ 1 but LðgðxiÞÞ ¼ 0’ ðfalse negativeÞ
tn¼ ‘number of xi with yi ¼ 0 and LðgðxiÞÞ ¼ 0’ ðtrue negativeÞ

and compute the true positive rate (tpr or TPR) given by
tpr¼ tp=mþ which reflects the fraction of correctly classified
learning examples from the positive class, and the false positive
rate (fpr or FPR) given by fpr¼ fp=m� which reflects the fraction of
wrongly classified learning examples from the negative class.

The above rates define several frequently used performance
measures [15,28,30,33] such as those given in Table 1, where s is a
skewing factor which is frequently taken to be the ratio between
the size of negative examples and the size of positive examples
(i.e., s¼m� =mþ ). The true positive rate (tpr) is also termed recall
and the true negative rate (tnr) is also called specificity. Recall can
be treated as a measure of completeness while precision can be
treated as a measure of fidelity. In documents retrieval, precision is
the fraction of the documents retrieved that are relevant to the
user's information need and recall is the fraction of the documents
that are relevant to the query being successfully retrieved. The
F-measure is the harmonic mean of precision and recall.

The tpr defined above can be plotted over fpr at different
decision threshold values (τ) over a range, say from 0 to 1 in a

Table 1
Some performance measures for binary classifiers.

Performance Definition s¼1 s¼m� =mþ

True Positive
Rate (Recall)

tpr¼ tp
mþ

– –

True Negative
Rate (specificity)

tnr ¼ tn
m� ¼ ð1� fprÞ – –

Accuracy tprþsð1� fprÞ
1þs

tprþ1� fpr
2

tpþtn
mþ þm�

Precision tpr
tprþs � fpr

tpr
tprþ fpr

tp
tpþ fp

F-measure 2tpr
tprþs � fprþ1

2tpr
tprþ fprþ1

2tp
tpþ fpþmþ

AUC 1
mþm� ∑mþ

i ¼ 1∑
m�
j ¼ 1uðξijÞ

– –

Remark: see Section 2.4.3 for detailed definition of AUC.
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