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Abstract

Probabilistic subspace similarity-based face matching is an efficient face recognition algorithm proposed by Moghaddam
et al. It makes one basic assumption: the intra-class face image set spans a linear space. However, there are yet no rational
geometric interpretations of the similarity under that assumption. This paper investigates two subjects. First, we present one
interpretation of the intra-class linear subspace assumption from the perspective of manifold analysis, and thus discover the
geometric nature of the similarity. Second, we also note that the linear subspace assumption does not hold in some cases,
and generalize it to nonlinear cases by introducing kernel tricks. The proposed model is named probabilistic kernel subspace
similarity (PKSS). Experiments on synthetic data and real visual object recognition tasks show that PKSS can achieve promising
performance, and outperform many other current popular object recognition algorithms.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Visual object recognition addresses the problem of find-
ing and identifying objects in images. It is of fundamental
importance to machine vision. For example, it is critical for
a robot or an intelligent system to understand the environ-
ment[1]. In recent years, visual object recognition research
has witnessed a growing interest in subspace analysis meth-
ods[2].

One classical subspace analysis approach is principal
component analysis (PCA). In visual object recognition,
PCA projects data onto a low-dimensional linear subspace
in a minimum sum-squared error sense, then adopts these
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principal projected components as features for further recog-
nition. However, PCA has at least one drawback: it regards
the minor components as noise, and discards them in the
following recognition procedure, which makes it an impor-
tant issue to choose a proper dimension for the principal
subspace. An intuitive solution is to choose the dimensional-
ity according to the energy of PCA eigenvalues[3], such as
choosing a dimensionality when the cumulative eigenvalue
energy is greater than 90%. However, practice shows that
applying this idea does not lead to performance improve-
ment in many cases, while increases the computational cost
remarkably sometimes.

Many researchers have noticed this problem in the field
of object recognition, pointing out that information should
be utilized not only from the principal subspace, but also
from its orthogonal complemental subspace. In other words,
it is favored to construct a noise-involved subspace model.
There are two typical solutions towards this issue. One is
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probabilistic PCA (PPCA)[4], which constructs a latent
variable model over PCA to characterize noise, and adopts
a maximum-likelihood (ML) method to estimate the noise
part, which is also called minor component. The other work
is by Moghaddam and Pentland[5], namely probabilistic
subspace analysis (PSA), which has been successfully em-
ployed in visual learning field. PSA estimates two marginal
Gaussian densities in those two subspaces, and forms a com-
plete density representation by the product of these two in-
dependent marginal densities. In this way, the PSA model
becomes a complete representation of the whole space. In
fact, PSA is equivalent to PPCA in characterizing observed
variables (a proof is given in the appendix).

In visual object recognition, the application of PSA leads
to the probabilistic subspace similarity (PSS) algorithm
[6,7], which is known as one of the best face recognition
algorithms in the FERET face recognition test[8]. The
important strategy adopted by PSS in face recognition is
the intra-class face image subspace, which assumes that
the difference between any two face images from the same
subject spans a linear space. And the PSA model is em-
ployed to characterize this space. This assumption can be
intuitively explained as ignoring the face variations both
within and outside of the subspace. To provide an in-depth
interpretation, Moghaddam also investigated PSS versus
other so-called principal manifold techniques in the ap-
plication of face recognition, including PCA, independent
component analysis (ICA) and kernel PCA[7]. However,
this work did not clearly present what kind of manifold PSS
exactly represents. There are also some other theoretic in-
terpretations from different perspectives. For example, Teh
and Hinton[9] interpreted it from the perspective of Boltz-
mann machines, and made a nonlinear generalization in the
framework of rate-coded restricted Boltzmann machines.
Recently, Wang and Tang proposed a unified framework on
PCA, linear discriminative analysis (LDA) and PSS in the
field of face recognition[10]. They empirically considered
that these three techniques characterize different kinds of
face variations (intrinsic, transformation, noise). Although
their interpretation, in some sense, touched the nature of the
intra-class linear subspace assumption, it did not reveal the
geometric meaning of the PSS measure yet. The first goal
of this paper is to present a novel geometric interpretation
to help us well understand the nature of the PSS algorithm.

In the procedure of interpretation, we also note that the
linear subspace assumption does not hold in some data
sets with complex structure. The other goal of this paper
is straightforward: we extend the linear subspace assump-
tion of PSS to nonlinear cases by introducing kernel tricks
[11,12], so that the nonlinear extension could perform well
in data sets with complex structure. The proposed algorithm
is named probabilistic kernel subspace similarity (PKSS).

The rest of this paper is organized as follows. In Section 2,
we briefly introduce the probabilistic subspace similarity and
present a geometric interpretation. In Section 3, we propose
the PKSS algorithm. In Section 4, we present experimental

results on synthetic data set and real visual object recognition
tasks. Finally, in Section 5, we draw conclusions.

2. Probabilistic subspace similarity and its geometric
nature

In this section, we first briefly introduce PSA and PSS.
Then, we present a geometric interpretation of the PSS sim-
ilarity.

2.1. Probabilistic subspace analysis

Given a training image setX = {xi}mi=1 ⊂ Rd , PCA
can be adopted to characterize the image space. However,
as having been pointed out previously, the principal eigen-
subspace by PCA is not a complete and good representation
of the full image space.

The image space can also be represented by a Gaussian
density function

P(x)= 1
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The dimension of the image space is usually comparable to
or even larger than (i.e.d >m) the number of training im-
age, which makes the second-order statistics (i.e.�) unreli-
able. Thus it is difficult to obtain the exact Gaussian density
representation.

PSA is a probabilistic eigen-space representation algo-
rithm towards both the shortcomings of PCA and the limi-
tations of Gaussian density estimation. PSA divides the full
image spaceX into principal subspaceF and its orthogo-
nal complemental subspacēF , which is illustrated inFig. 1.
Note that the principal subspaceF can also be spanned by
the firstp principal components of PCA onX. Then, PSA
estimates two Gaussian densities in these two subspaces,
and the complete density estimation can be written as the
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Fig. 1. Decomposition of the full image spaceX into principal sub-
spaceF and its orthogonal complemental subspaceF̄ : X=F ⊕ F̄ .
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