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Abstract

This paper proposes a new method for finding principal curves from data sets. Motivated by solving the problem of highly
curved and self-intersecting curves, we present a bottom-up strategy to construct a graph called a principal graph for representing
a principal curve. The method initializes a set of vertices based on principal oriented points introduced by Delicado, and then
constructs the principal graph from these vertices through a two-layer iteration process. In inner iteration, the kernel smoother
is used to smooth the positions of the vertices. In outer iteration, the principal graph is spanned by minimum spanning tree
and is modified by detecting closed regions and intersectional regions, and then, new vertices are inserted into some edges
in the principal graph. We tested the algorithm on simulated data sets and applied it to image skeletonization. Experimental
results show the effectiveness of the proposed algorithm.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction emphasizes the self-consistency property of principal curves,
which means that each point of a principal curve is the
Principal component analysis is widely used in dimension average of all data projecting there. Tibshirgh?2] gave
reduction, and feature extraction. Principal curves are non- his definition in terms of the mixture probability model in
linear generalizations of principal components and have re- which a distribution is decomposed into a latent variable
ceived significant attention since their introduction by Hastie distribution on a curve and a conditional distribution given
and StuetzI¢1]. Considerable work has been reported about the latent variable value. Kégl et 6] defined a principal
applications of principal curves, such as, shape detection andcurve as a curve which minimizes the expected squared
object identificatior{2,3], gradient analysis in ecolody], distance from data to their projection on the curve over a
image skeletonizatiofb—7], feature extraction and pattern  class of curves with bounded length. Sandilya and Kulkarni
classificatiorn[8,9], speech recognitiofi0], and forecasting [13] provided a similar definition, but they constrained total
[11]. turn instead of length. Delicad&4] introduced the notion of
There have been several different definitions of princi- principal oriented points (POPs) and made principal curves
pal curves. The earliest one by Hastie and Stueft]e visit only POPs.
Based on these definitions, a few methods for finding
principal curves from data sets have been proposed. Hastie
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method and used the projection residual of the data, instead
of the data themselves, to estimate conditional expectations
for reducing both bias and variance. Tibshirgt2] used

the EM algorithm to maximize the log-likelihood of the ob-
servation implied by his mixture model under the Gaussian
assumption. Verbeek et dlL5] proposed &-segments al-
gorithm which incrementally combines local line segments
into the polygonal line to achieve an objective similar to Tib-
shirani’s. Kégl et al[6] presented the polygonal line algo-
rithm which starts with an initial polygonal line, adds a new
vertex to the polygonal line at each iteration, and updates
the positions of all vertices so that the value of a penalized
distance function is minimized. Singh et §] used the
batch formulation of the self-organizing mapping (SOM) to
obtain principal curves. Delicadd4] found the principal
oriented points one by one and orderly linked them to esti-

mate principal curves. Other related techniques, such as the

generative topographic mapping and the growing cell struc-
tures, can also be used to find approximations to principal
curves[15].

For highly curved or self-intersecting curves such as
spiral-shaped curve$,15], existing methods did not work
well. Verbeek et al[15] attempted to solve this problem
by combining line segments which were optimized to
minimize the total squared distance of all points to their
closest segments into a polygonal line. The first principal
component of all data is often used as the initial estimation
of the principal curve when lacking the prior knowledge.
Unfortunately it is a bad initialization for a highly curved
or self-intersecting curve. So it is necessary to consider the
local feature of a principal curve from the beginning. In this
paper, we present a bottom-up strategy to construct a graph
(called a principal graph similar to that at Kégl et ])
for representing a principal curve. Instead of starting with a
simple topology such as the first principal component and
then increasing its complexity iteratively, we directly span
the sufficient complex topology and then refine it itera-
tively. In our algorithm, POPs in local areas are founded as
initial candidate points on a principal curve; we then take
these points as a set of vertices, and perform a two-layer
iteration process from it to construct a principal graph.

This paper is organized as follows. Section 2 introduces
the definitions of principal curves and principal oriented
points. Section 3 describes the bottom-up algorithm in detail.
Section 4 discusses the test results on simulated data set
and applications to image skeletonization. We conclude the
paper with a discussion in Section 5.

2. Principal curves and principal oriented points

A principal curve always has the self-consistency prop-
erty [1]. Let X denote a random vector iR?, and f (%) de-
note a smooth (infinitely differentiable) curve Rf param-
eterized by, € R™. The projection index s : R? — R'is
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Fig. 1. lllustration of principal curves and principal oriented points.

defined as

Ap(X) = S;JP{ZI X — f)ll = iflltf X — f(/l)\l}- @

The curvef (1) is self-consistent if

Q) =EX|2p(X)=12) (2)
for almost allZ. Intuitively, the self-consistency means that a
principal curve passes through the “middle” of a distribution
and each point of it is the average (under the distribution)
of all points that project there, as illustratedRig. 1
According to the self-consistency mentioned above, we
cannot know whether a point is self-consistent unless we
know the whole curve to which this point belongs. Delicado
[14] discussed the self-consistency of a single point and
established the definition of principal oriented points (POPSs)
based on the property of the first principal component for
normal distribution that can be stated as the projection of
the normal random variable onto the hyperplane orthogonal
to the first principal component has the lowest total variance
among all the projected variable onto any hyperplane.
Letbh € S971 = {w e RY||w| =1}, H(X, b) be hyper-
plane orthogonal td passing througlk : H(X,b) ={Y €
RA(Y — X)'b =0}, u(X, b) and¢(X, b) be the conditional
expectation and the total variance of random variables on
H(X, b), respectivelyu(X,b) = E(Y|Y € H(X, b)), and
¢(X,b) =TV(Y|Y € H(X,b)). Theb for achieving the
infimum of ¢(X, b) is defined as the principal direction of
and denoted by*(X): b*(X) = arg min,gi-1¢(X, b).
The corresponding (X, b) is
u*(X) = u(X, b*(X)). (3)
Fixed points ofu™*(X) are defined as principal oriented
points which are denoted bi(X): I'(X) ={Y € R4|Y €
u*(X)}, as shown irFig. 1
Delicado[14,16] proposed an algorithm to find a corre-
sponding POP starting with an arbitrary point in the data set.
Let #*(X) be the sample version of the functiafi(X) in
the formulation (3) Xg be an arbitrary point in the data set.
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