
Clustering of multivariate binary data with dimension reduction via
L1-regularized likelihood maximization

Michio Yamamoto a,n, Kenichi Hayashi b,1

a Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku,
Kyoto 606-8507, Japan
b Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

a r t i c l e i n f o

Article history:
Received 25 June 2014
Received in revised form
27 May 2015
Accepted 29 May 2015

Keywords:
Binary data
Clustering
Dimension reduction
EM algorithm
Latent class analysis
Sparsity

a b s t r a c t

Clustering methods with dimension reduction have been receiving considerable wide interest in
statistics lately and a lot of methods to simultaneously perform clustering and dimension reduction
have been proposed. This work presents a novel procedure for simultaneously determining the optimal
cluster structure for multivariate binary data and the subspace to represent that cluster structure. The
method is based on a finite mixture model of multivariate Bernoulli distributions, and each component
is assumed to have a low-dimensional representation of the cluster structure. This method can be
considered as an extension of the traditional latent class analysis. Sparsity is introduced to the loading
values, which produces the low-dimensional subspace, for enhanced interpretability and more stable
extraction of the subspace. An EM-based algorithm is developed to efficiently solve the proposed
optimization problem. We demonstrate the effectiveness of the proposed method by applying it to a
simulation study and real datasets.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Binary data are commonly observed and analyzed in many
application fields: behavioral and social research, biosciences,
document classification, and inference on binary images. For
example, Ekholm et al. [1] analyzed biomedical data including
five unequally spaced binary self-assessment measurements of
arthritis and obesity data on the presence or absence of obesity in
five cohorts of children. Also, the binarized data of the MovieLens
100K and the Netflix dataset, which are popular datasets for
collaborative filtering tasks, have been analyzed by Kozma et al.
[2]. One of the purposes of analyzing binary data, as well as
continuous data, is the partitioning of objects which have binary
features into several unpredetermined homogeneous groups (clus-
ters). For clustering of objects with many variables, it is quite
important to know if some of the variables do not contribute much
to the structure of clusters because the inclusion of redundant
information can reduce the performance of the cluster analysis [3].
Also, a lower-dimensional (say two or three dimensional) repre-
sentation of the cluster structure, based on the most significant
information, is very useful for evaluating and interpreting the
results of the cluster analysis [4].

Hence, what is needed is a procedure that constructs a low-
dimensional representation of the multivariate binary data, such that
the cluster structure in the data is maximally revealed. For this
purpose, researchers often carry out a preliminary dimension reduc-
tion technique (e.g., [5–10]). Among the references, [5,6] developed
principal component analysis (PCA) models for binary data, while the
other references have developed more general PCA models to handle
exponential family data. Cluster analysis is then performed on the
object scores on the first few principal components. Although it is easy
to implement, this two-step sequential approach, also called the
tandem approach, provides no assurance that the components
extracted in the first step are optimal for the subsequent cluster
analysis, because the two steps are implemented separately by
optimizing a different loss function [4,11–15]. For multivariate con-
tinuous data, instead of the two-step tandem clustering procedure,
several methods that simultaneously perform cluster analysis and
dimension reduction have been proposed [4,13,15–17].

On the other hand, for multivariate binary data, a few methods
can conduct the analysis for simultaneously obtaining a cluster
structure and a subspace for the cluster structure. Patrikainen and
Mannila [18] have developed a subspace clustering method of
binary data that can be used in high-dimensional settings. Cagnone
and Viroli [19] have proposed a factor mixture analysis model for
multivariate binary data, in which latent variables are distributed as
a finite mixture of multivariate Gaussian distributions.

In general, there are two types of clustering techniques with
finding subspaces: one intends to find a subspace that is common
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to all clusters [14], while the other aims to find a subspace specific
to each group [20]. These two techniques can be used for different
purposes. The former has a strong point in helping researchers to
understand the configuration of objects and cluster centers in a
single low-dimensional space. We need this technique if we want
to analyze the data at hand using a component-based approach
like the ordinary factor analysis and principal component analysis.
The illustration shown in [4] is useful for understanding how to
analyze the data using the common subspace clustering. On the
other hand, the latter approach is needed for analyzing the data
based on the assumption that the data points could be drawn from
multiple subspaces. For example, a video sequence could contain
several moving objects, and different subspaces might be needed
to describe the motion of different objects in the scene [20]. In this
paper, we focus on the common subspace clustering.

In the related works to the subspace clustering, there are
several works on the problem of multi-task learning in which
multiple tasks share a low-dimensional subspace. In the multi-task
problem, parameters to be estimated are assumed to share some
common structure in the tasks. For example, parameters are
divided into two parts: one is common to all tasks and another
is specific to each task [21]. Also, Argyriou et al. [22] assume that
tasks’ structure is summarized by a positive definite matrix which
is linked to the covariance matrix between the tasks. For super-
vised learning, [23] uses the formulation in which tasks share a
linear low-dimensional subspace, and [24] proposes an optimiza-
tion problem regularized by the projection distance of task-related
parameters from the manifold shared by all tasks. In addition, for
semi-supervised learning, there are some works that formulate
the subspace shared by multiple tasks [25,26].

As described above, Patrikainen and Mannila's [18] method
allows for obtaining a cluster structure and a subspace for the
cluster structure simultaneously. However, their method is rather
cluster-specific subspace clustering. In addition, in the past few
decades, because of technical advances in storing and processing
data, we can obtain a large dataset that includes a large number of
variables. Thus, we need to take into account such high-
dimensional data. Cagnone and Viroli's [19] method, which is a
common subspace clustering technique, cannot be used for a high-
dimensional setting straightforwardly and may need strict restric-
tions for their parameters because of the identifiability problem.

Thus, we propose a new method to simultaneously find a
cluster structure of multivariate binary data and an optimal low-
dimensional space for clustering. The proposed model is based on
the framework of latent class analysis (LCA) [27], which is used not
only for analyzing the relation between categorical variables and
discrete latent factors but for clustering objects with categorical
features (e.g., [28]). Furthermore, our proposed method can deal
with high-dimensional data.

The remainder of this paper is structured as follows. In Section 2,
we introduce a new method to cluster multivariate binary data with
dimension reduction. Section 3 describes an algorithm for the
proposed optimization problem. Section 4 is devoted to studying
the working of the clustering method using artificial and real data
examples. Finally, we sum up our findings and set out directions for
future expansion in Section 5.

2. Proposed method

Let ~y ¼ ð ~y1;…; ~yDÞ0 be a random vector of D binary variables.
Suppose there are K latent (unobservable) classes in a population
and let ~uk, k¼ 1;…;K , be an allocation variable that takes “1” if an
observation belongs to class k, and “0” otherwise. We write
~u ¼ ð ~u1;…; ~uK Þ0. We assume that the allocation variable follows a
multinomial distribution, i.e., the probability that ~u takes the value

u¼ ðu1;…;uK Þ0 is

f ð ~u ¼ uÞ ¼ ∏
K

k ¼ 1
ξuk
k ;

where ξk ¼ Prð ~u1 ¼ 0;…; ~uk ¼ 1;…; ~uK ¼ 0Þ.
Given that an observation is in the kth latent class, the

probability that the random vector ~y takes the value
y¼ ðy1;…; yDÞ0, where each yd takes 0 or 1, is represented as
Prð ~y ¼ yj ~uk ¼ 1Þ. The unconditional probability of the response y
when we do not know the latent class of the observation is

Prð ~y ¼ yÞ ¼
XK
k ¼ 1

ξkPrð ~y ¼ yj ~uk ¼ 1Þ: ð2:1Þ

Here, we need to specify how the probability Prð ~y ¼ yj ~uk ¼ 1Þ
depends on parameters. We postulate that, given the latent class
to which an observation belongs, the responses on the binary
variables are independent:

Prð ~y ¼ yj ~uk ¼ 1Þ ¼ ∏
D

d ¼ 1
Prð ~yd j ~uk ¼ 1Þ: ð2:2Þ

This assumption of conditional independence has been widely
used in latent class modeling in sociology [29], and is directly
analogous to the assumption in the factor analysis model that
observed variables are conditionally independent given the
factors [27].

Finally, to specify the model completely, we need to specify a
set of parameters that define the conditional probability of ~y, with
the value of ~u given. Suppose that ~y1;…; ~yN are mutually inde-
pendent random variables that have the same distribution as ~y,
and the entries of Y ¼ ðyndÞ are those realizations. We assume that,
given the class k, ~yd follows the Bernoulli distribution with success
probability πkd. For the traditional LCA [27], we consider a
parameter vector θk ¼ ðθk1;…;θkDÞ0, where θkd is the logit trans-
formation of πkd. We define the inverse logit transformation
πðθÞ ¼ ð1þexpð�θÞÞ�1. The success probabilities can be repre-
sented using the canonical parameters θkd as πkd ¼ πðθkdÞ. Let ~ynd

be the dth element of ~yn. The individual data-generating prob-
ability given the class then becomes

Prð ~ynd ¼ ynd j ~uk ¼ 1Þ ¼ Prð ~ynd ¼ ynd j ~uk ¼ 1;θkdÞ
¼ πðθkdÞynd1�πðθkdÞ1�ynd

¼ πðqndθkdÞ;
with qnd ¼ 2ynd�1 since πð�θÞ ¼ 1�πðθÞ. Then, these representa-
tions lead to the compact form of the log likelihood as

XN
n ¼ 1

log
XK
k ¼ 1

ξk ∏
D

d ¼ 1
πðqndθkdÞ

 !
:

We aim to obtain a low-dimensional representation of binary
data in which the true cluster structure exists. Thus, we assume
that canonical parameter θkd has a low-rank representation as
follows:

θkd ¼ μdþ f 0kad; ð2:3Þ
where μdAR, and for some positive integer L, f kARL and adARL.
Here, μd, f k, and ad denote a centroid for the dth variable, a
component score of the kth cluster, and a loading value for the dth
variable, respectively. We write ξ¼ ðξ1; :::;ξK Þ0, μ¼ ðμ1; :::;μDÞ0,
F¼ ðf 1; :::;f K Þ0, and A¼ ða1; :::;aDÞ0. To guarantee the determination
of the decomposition for F and A, we require that F has ortho-
normal columns. Then the log likelihood can be written as

ℓðξ;μ; F;AÞ ¼
XN
n ¼ 1

log
XK
k ¼ 1

ξk ∏
D

d ¼ 1
πðqndðμdþ f 0kadÞÞ

 !
: ð2:4Þ

Here, to deal with the high-dimensional problem, we assume
that most of the elements of the true A are exactly zero. A sparse
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