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a b s t r a c t

Here we present a novel, information-theoretic salient line segment detector. Existing line detectors
typically only use the image gradient to search for potential lines. Consequently, many lines are found,
particularly in repetitive scenes. In contrast, our approach detects lines that define regions of significant
divergence between pixel intensity or colour statistics. This results in a novel detector that naturally
avoids the repetitive parts of a scene while detecting the strong, discriminative lines present. We
furthermore use our approach as a saliency filter on existing line detectors to more efficiently detect
salient line segments. The approach is highly generalisable, depending only on image statistics rather
than image gradient; and this is demonstrated by an extension to depth imagery. Our work is evaluated
against a number of other line detectors and a quantitative evaluation demonstrates a significant
improvement over existing line detectors for a range of image transformations.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Line segments are an important low-level feature, particularly
where man-made structures are present. In many situations they
may be used in a similar manner to points, e.g. pose estimation [5],
stereo matching [9], or structure from motion [8]. This may often
be helped by using the duality between lines and points, resulting
in similar registration approaches for the two types of feature [26].
Further, there are tasks especially suited to lines, e.g. vanishing
point estimation for camera calibration [10], image resizing [17], or
structural graph matching [19].

Existing line detection methods either first use a derivative-
based edge detector and detect lines from the edges (e.g. [4] or via
the Hough Transform [6]), or they directly group pixels in the
image into line segments based on the magnitude and direction of
their derivative [49,14]. However, these all act locally on the
image, detecting a large number of lines, particularly in repetitive
scenes. This limitation is illustrated1 in Fig. 1: state of the art line
detection detects all lines regardless of their significance, whereas,
ideally, the non-repetitive lines denoting the geometrically sig-
nificant edges would be preferentially detected.

To address this, we propose to detect only the salient line
segments, an area that, to the best of the authors' knowledge, has
not been addressed in the literature. Instead, saliency detection

commonly refers to the computation of a saliency map (e.g. [31]),
with some work addressing salient edge detection [28] and salient
point detection [32]. In detecting only the salient line segments,
we propose an approach that is fundamentally different from
existing methods for line segment detection in that it is not
derivative-based: instead, it seeks informational contrast between
regions and thereby favours non-repetitive edges. The information
is expressed in terms of distributions of pixel intensities taken
from rectangles of a variable width, meaning our approach
operates over a larger scale than other detectors and so naturally
avoids repetitive parts of a scene.

We measure the contrast between the two distributions on
either side of the line using the information-theoretic Jensen–
Shannon Divergence (JSD). This measure has been used elsewhere
for edge detection [39], unlabeled point-set registration [50], and
DNA segmentation [25]. It has many interpretations, e.g. it may be
expressed in terms of other information-theoretic quantities such
as the Kullback–Liebler Divergence and Mutual Information, hav-
ing further interpretations in both statistical physics and mathe-
matical statistics [25], and is the square of a metric.

Our measure of line saliency may further be used as a saliency
filter on existing line detectors. This allows it to cull the non-
salient line segments computed by other detectors and localise the
position of salient lines under our saliency measure. It furthermore
increases the speed of salient line detection by orders of magni-
tude over the naive approach of determining the saliency measure
of every possible line segment on the image.

This distribution-based approach to line detection we propose
is highly generalisable, being applicable to any situation where
informational contrast can be found. As such, we implement an
extension for line detection in depth images, whereby lines that
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jointly delineate changes in surface orientation or texture are
detected. These are reprojected, allowing for 3D salient line
detection and hence potential multi-modal applications.

The contributions of this paper are as follows: firstly, a
distribution-based salient line segment detector is formulated
and implemented: the first known method for salient line seg-
ment detection. Secondly, the notion of saliency-based filtering is
applied to existing line detectors for efficient salient line detection.
Thirdly, an extension to depth imagery is implemented, allowing
for the detection of salient lines in 3D structures. An evaluation
shows that, when considering that we detect only a small number
of lines, our approaches significantly outperform the others in
terms of repeatability and homography estimation. It demon-
strates that they are representative of the underlying aspects of
the scene, with potential use for problems that benefit from fewer,
but more reliable, features e.g. [20].

The structure of the paper is as follows: in Section 2, we review
related work in line detection, edge detection, and line detection
in depth imagery. In Section 3 the methodology is described for
both salient line detection and saliency filtering, with the exten-
sion to depth imagery (and subsequently 3D by reprojection)
described in Section 4. In Section 5 a range of qualitative and
quantitative results are given, and in Section 6 our conclusions and
ideas for future work are presented.

2. Related work

Since we are unaware of any research into salient line detection
(or any line detection method that does not act locally on the
derivative of the image) we firstly review line segment detection,
before reviewing relevant edge detection methods. Finally, line
detection in other modalities (depth images, 3D data) is reviewed.

2.1. Line detection

Most early methods of line detection relied upon the Hough
Transform (HT) [6] to determine a set of lines from a set of edges
(typically extracted from the image by the Canny edge detector
[15]). The HT exhaustively searches the space of all possible
infinitely long lines, determining how many edge pixels are
consistent with each line; lines with a suitably large number of
edge pixels lying on them are returned as the output of the
algorithm. In its naive form there are many drawbacks, for
example it only depends on the magnitude of the gradient and
not the orientation, and leaves a problem of how to accurately
determine the endpoints of the lines. However, there are many
variants of the Hough Transform [30] that seek to solve some of
these problems.

Regardless of the approach to line detection, early methods
particularly suffered from the problem of setting meaningful
thresholds. This was addressed by the Progressive Probabilistic
Hough Transform (PPHT) [41] by Matas et al. where it is achieved

in a probabilistic manner: the threshold is expressed in terms of
the probability of the line occurring by chance. The idea was
extended by Desolneux et al. [21] who exhaustively search every
line segment on the image and define an a contrario model to
control the number of false detections. The latter part is a
straightforward extension: if there are N possible line segments
on an image and p is the probability of that line segment occurring
by chance, then accepting the line if poϵ=N guarantees, on
average, ϵ false detections per image.

However, Grompone von Gioi et al. [48] note that this model, in
its current form, is too simple. Given an array of line segments, the
model tends to interpret it as one long line, leading to unsatisfac-
tory results. This is not a fault of the a contrario model, but rather
that it is applied to each line individually. If instead it is applied to
groups of lines at a time it will segment a line into its components
in the correct manner, known as ‘multi-segment analysis'. How-
ever, this adds another layer of complexity, becoming OðN5Þ for an
N�N image.

Grompone von Gioi et al. subsequently implemented a linear-
time Line Segment Detector (LSD) [49]. It is based on both the a
contrario model and an earlier line detection algorithm by Burns
et al. [14]. It is a spatially based approach, starting from small line
segments and growing them. Furthermore, each segment has its
own line support region, constructed by grouping nearby pixels
that have a similar gradient, thus detecting lines of variable width.

The a contrario model has also been implemented in the
EDLines detector by Akinlar and Topal [4]. The approach performs
similarly to LSD but up to ten times faster due to its very fast edge
detection algorithm that simultaneously detects edges and groups
them into connected chains of pixels. Less processing time is
required for subsequent line detection, resulting in a real-time line
segment detector.

All line detection methods reviewed above are unable to detect
lines based on their significance or surroundings. Consequently,
they tend to return a large number of lines which does not capture
the general structure of the scene.

2.2. Edge detection in images

Similarly to approaches to line detection, many approaches to edge
detection act locally on the image. One of the earliest algorithms, the
Canny edge detector [15], convolves the image with a Gaussian filter
before computing themagnitude of the gradient at each pixel. Variants
have been proposed in particular for the convolution stage; notably Liu
and Feng [38] use an anisotropic Gaussian filter that only operates
perpendicularly to an edge. It is combined with a multi-pixel search to
detect longer edges than other approaches, culminating in the detec-
tion of short edge-line segments. Their results indicate superior
performance compared to existing edge detectors in the presence of
different levels of Gaussian noise. However, both approaches are
fundamentally derivative based, acting locally on the image regardless
of the structure of the scene.

Fig. 1. Left: Input image. Centre: LSD algorithm, [49], returning 1026 lines. Right: Our proposed approach, returning 75 lines, indicative of the broad structure of the scene.

M. Brown et al. / Pattern Recognition 48 (2015) 3993–40113994



Download English Version:

https://daneshyari.com/en/article/10360752

Download Persian Version:

https://daneshyari.com/article/10360752

Daneshyari.com

https://daneshyari.com/en/article/10360752
https://daneshyari.com/article/10360752
https://daneshyari.com

