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a b s t r a c t

The size of datasets has been increasing rapidly both in terms of number of variables and number of
events. As a result, the empty space phenomenon and the curse of dimensionality complicate the
extraction of useful information. But, in general, data lie on non-linear manifolds of much lower
dimension than that of the spaces in which they are embedded. In many pattern recognition tasks,
learning these manifolds is a key issue and it requires the knowledge of their true intrinsic dimension.
This paper introduces a new estimator of intrinsic dimension based on the multipoint Morisita index. It
is applied to both synthetic and real datasets of varying complexities and comparisons with other
existing estimators are carried out. The proposed estimator turns out to be fairly robust to sample size
and noise, unaffected by edge effects, able to handle large datasets and computationally efficient.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The 21st century is more and more data-dependent and, in
general, when collecting data for a particular purpose, it is not
known which variables matter the most. This lack of knowledge
leads to the emergence of high-dimensional datasets characterized
by redundant features which artificially increase the volume of
data to be processed. As a result, the empty space phenomenon [1]
and the curse of dimensionality [2] make it challenging to conduct
pattern recognition tasks such as clustering and classification.

The goal of dimensionality reduction (DR) [3,4], sometimes
called manifold learning, is to address this issue by mapping the N
sampled data points into the lower dimensional space where they
truly lie. Such a space is often considered as a manifold of intrinsic
dimension M1 embedded in a Euclidean space of dimension E with
EZM. E equals the number of variables of a dataset and the
intrinsic dimension (ID) of a manifold is equal to the theoretical ID
of the data. If a manifold is space-filling, its dimension M � E. In
contrast, if the Euclidean space is partially empty, MoE. The
optimality of DR greatly depends on the accuracy of ID estimates.
An underestimation of the theoretical ID will result in the implo-
sion of the data manifold and information will be irreparably lost.
On the contrary, an overestimation will lead to noise in the final
mapping. From an application perspective, DR can be used to
produce low dimensional syntheses of high dimensional datasets

[5] and as a preprocessing tool for supervised learning [6,7] and
data visualization [8].

DR methods perform variable transformations to capture the
complex dependencies which generate redundancy within data-
sets. Nevertheless, it is often important not to recast data. The
fractal dimension reduction (FDR) algorithm [9–12] was designed
to this end. The fundamental idea is to remove from a dataset all
the variables which do not contribute to increasing its ID. FDR can
also be adapted to supervised feature selection methods [13]. The
goal is then to reject irrelevant or redundant variables (or features)
according to a prediction task (i.e. regression or classification).
Although ID estimation lies at the core of FDR, more traditional
unsupervised [14–16] and supervised [17–22] feature selection
methods do not consider it. It has, however, a great potential in
speeding up search strategies, such as those used in [23–26].

These different approaches highlight that ID estimation is a
fundamental problem when dealing with high-dimensional data-
sets. Unfortunately, ID estimators [27,28] suffer from the curse of
dimensionality as well. Their overall performance depends on
many factors (to various degree), such as the number of data
points, the theoretical ID of data and the shape of manifolds. The
present research deals with a new ID estimator in order to provide
a solution to the problems raised by these factors. It is based on
the recently introduced multipoint Morisita index (m-Morisita)
[29–31]. The m-Morisita index is a measure of global clustering
closely related to the concept of multifractality and, so far, it has
been successfully applied within the framework of (2-dimen-
sional) spatial data analysis [29,30].

The paper is organized as follows: In Section 2, traditional
fractal-based and maximum likelihood methods of ID estimation
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are presented. Section 3 derives a new ID estimator from the m-
Morisita index and introduces a new algorithm for its application
to high-dimensional datasets. Section 4 is devoted to comparisons
between the proposed estimator and those of Section 3. Their
behaviour regarding sample sizes, noise and the dimension of
manifolds is analysed. A special attention is also paid to their bias
and variance by using Monte-Carlo simulations and real world
case studies from the UCI machine learning repository are exam-
ined. Finally, conclusions are drawn in Section 5.

2. Existing methods

Many ID estimation methods have been proposed [27,28,32–
34] and they can be roughly divided into projection (e.g. PCA) and
geometric methods (e.g. fractal, nearest-neighbour and maximum
likelihood methods). This section focuses on fractal-based and
maximum likelihood estimators. They are commonly used in a
wide range of applications and they generally provide non-integer
values as ID estimates.

2.1. Fractal-based estimation methods

The word fractal was first coined by Mandelbrot [35] to
describe scale-invariant sets. At small scales δ, for a given point
pattern, one has that

nboxðδÞpδ�D0 ð1Þ
where nboxðδÞ is the number of grid cells necessary to cover the
whole pattern and D0 is known as the box-counting dimension
[35–37]. In practical applications, due to its simplicity, D0 often
replaces the Hausdorff dimension D (or fractal dimension) and it
can be proved that D0 is an upper bound of D [38].

In complex cases, the scaling behaviour of the moments of
point distributions cannot be fully characterized by only one
fractal dimension and a full spectrum of generalized dimensions,
Dq, is required. Such distributions are referred to as being multi-
fractal [39–42]. Dq is generally obtained by using a generalization
of the box-counting method [39–41,43] based on Rényi's informa-
tion, RIqðδÞ, of qth order [44]. The central scaling law of this
approach can be written as follows for qa1:

expðRIqðδÞÞpδ�Dq ð2Þ
where

RIqðδÞ ¼
1

1�q
log

XnboxðδÞ
i ¼ 1

piðδÞq
 !

ð3Þ

In this last equation, piðδÞ ¼ ni=N is the value of the probability
mass function in the ith grid cell of size δ (ni is the number of
points falling into the ith cell) and qAR⧹f�1g. Finally, one has that

Dq ¼ lim
δ-0

RIqðδÞ
log

1
δ

� � ð4Þ

and

lim
q-1

Dq ¼ df i ð5Þ

D2 ¼ df cor ð6Þ
where dfi and dfcor are, respectively, the information dimension
[45,39] and the correlation dimension [46].

Usually, dfcor is computed with the Grassberger–Procaccia (GP)
algorithm [46]. This algorithm is designed to better take advantage
of the range of available pairwise distances between points. It can
be introduced as follows: at small scales, for a point set,

XN ¼ fx1;…; xNg, one has that

CðδÞpδdf cor ð7Þ
where

CðδÞ ¼ 2
NðN�1Þ

XN
i ¼ 1

XN
j ¼ iþ1

1 J xi �xj J rδf g ð8Þ

with 1 being an indicator function and dfcor can be expressed as

df cor ¼D2 ¼ lim
δ-0

log ðCðδÞÞ
log ðδÞ ð9Þ

The available values of RIqðδÞ and log ðCðδÞÞ depend on the data
resolution. A commonly used method for estimating Dq consists in
plotting RIqðδÞ vs log ðδ�1Þ for a chosen scale interval. The final
estimate is then the slope of the linear regression fitting the linear
part of the resulting chart. The procedure is the same for the GP
algorithm, except that dfcor and log ðCðδÞÞ replace, respectively, Dq

and RIqðδÞ. Eventually, both Dq (in general 0rqr2) and dfcor can
be used as ID estimators.

Although these methods may entail some disadvantages due to
the finiteness of datasets [33], they have been successfully applied
in various fields, such as spatial [47,48] and time series [49]
analysis, cosmology [50], climatology [36,51,52] and pattern
recognition [53,54]. They have also been used in different proce-
dures improving their overall performance [55].

2.2. Maximum likelihood estimation methods

The maximum likelihood estimation (MLE) of ID was intro-
duced in [28]. The proposed method relies on the assumption that
the k-nearest neighbours (k-NN) of any point xi of a point set
XN ¼ fx1;…; xNg are stemming from a uniform probability density
function f ðxiÞ. As a consequence, for a fixed xi, the observations are
treated as a homogeneous Poisson process within a small sphere
Sxi ðRÞ of radius R centred at xi. On this basis, the inhomogeneous
binomial process fNðt; xiÞ;0rtrRg with

Nðt; xiÞ ¼
XN
j ¼ 1

1
xj ASxi ðtÞ
� � ð10Þ

counts the number of observations within the distance t of xi and
can be approximated as a Poisson process. The rate of this process
is

λðt; xiÞ ¼ f ðxiÞVðmðxiÞÞmðxiÞtmðxiÞ�1 ð11Þ
where mðxiÞ is the dimension of the manifold on which xi lies and
VðmðxiÞÞ is the volume of the unit sphere in RmðxiÞ centred at xi. The
log-likelihood function of Nðt; xiÞ can then be expressed as

LðmðxiÞ;θðxiÞÞ ¼
Z R

0
log ðλðt; xiÞÞ dNðt; xiÞ�

Z R

0
λðt; xiÞ dt ð12Þ

where θðxiÞ ¼ log ðf ðxiÞÞ. Finally, the MLE for mðxiÞ provides a local
estimator of ID [28,56,57]:

m̂kðxiÞ ¼
1

k�2

Xk�1

j ¼ 1

log
TkðxiÞ
TjðxiÞ

� �2
4

3
5

�1

ð13Þ

where k42 is the number of NN taken into account and TkðxiÞ is
the distance between xi and its kth NN.

If it is assumed that all the observations belong to the same
manifold, one has that

m̂k ¼
1
N

XN
i ¼ 1

m̂kðxiÞ ð14Þ

which is simply an average over the whole dataset and, for
kAfk1; k1þ1;…; k2g with k142, the final estimate of ID is
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