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a b s t r a c t 

This paper develops an analytical method of truncating inequality constrained Gaussian distributed vari- 

ables where the constraints are themselves described by Gaussian distributions. Existing truncation meth- 

ods either assume hard constraints, or use numerical methods to handle uncertain constraints. The pro- 

posed approach introduces moment-based Gaussian approximations of the truncated distribution. This 

method can be applied to numerous problems, with the motivating problem being Kalman filtering with 

uncertain constraints. In a simulation example, the developed method is shown to outperform uncon- 

strained Kalman filtering by over 40% and hard-constrained Kalman filtering by over 17%. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Gaussian distributioned variables are widely used to represent 

the state of a system in many problems ranging from state es- 

timation [1] to scheduling [2,3] . In practice, the state vectors in 

many systems are known to satisfy inequality constraints. Exam- 

ples of state-constrained systems include health monitoring [4] , vi- 

sion systems [5] , robotics [6] , binary sensor networks [7] , and ob- 

ject tracking [8] . This paper deals specifically with systems that 

are subject to inequality constraints where the constraints them- 

selves have uncertainty described by Gaussian distributions. Con- 

straints described by Gaussian distributions can arise from many 

sources in state estimation problems including discrete sensors, 

such as position or level switches, that have uncertainty on their 

activation point, obstacles whose positions are uncertain, and other 

physical and model-derived bounds such as maximum fuel lev- 

els based on historical fuel burn rates. Constrained Gaussian dis- 

tributed variables also appear in scheduling applications where 

the distribution describing the time at which an event is pre- 

dicted to occur is constrained by the time distributions of other 

events. 

Hard inequality constraints are well studied [1] , where the main 

approaches are estimate projection [4] , gain projection [9] , and 

Probability Density Function (PDF) truncation [10] . Estimate and 

gain projection approaches incorporate the constraints into the 

derivation of the Kalman filter, resulting in a constrained optimi- 
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sation problem that can be solved using quadratic programming, 

least squares approaches, amongst others [1,11] . Truncation meth- 

ods, on the other hand, are applied directly to the PDF resulting 

from a Kalman filter, as outlined in Fig. 1 . This approach truncates 

the PDF at the constraints and calculates the mean and covariance 

of the truncated PDF, which become the constrained state esti- 

mate and its covariance. The PDF truncation approach was shown 

in [10] to, in general, outperform the estimate projection method. 

The truncation approach has been applied to probabilistic collision 

checking for robots [12] , and has been extended to non-linear sys- 

tems [13,14] . 

Soft constraints correspond to uncertain or noisy constraints, 

and are less studied than hard constraints. Soft equality constraints 

are typically incorporated as noisy measurements [1,15] . However, 

soft inequality constraints are significantly more difficult to deal 

with, and numerical filters such as a Particle Filter (PF) are typ- 

ically used for these problems [16] . Several numerical methods 

have been examined for incorporating soft constraints into the 

Kalman filter. A numerical PDF truncation method was used in [6] 

for robot localisation using Radio Frequency IDentification (RFID) 

tags, where the noise on the inequality constraints was highly 

non-Gaussian. Compared with a PF approach, the numerical PDF 

truncation method was 2 to 3 orders of magnitude faster while, in 

general, providing similar results. A similar RFID problem was ex- 

amined in [7] where aspects of the Unscented Kalman Filter (UKF) 

and PF were combined—the prediction step used the standard UKF 

step, while the correction step was modified to weight the sigma- 

points of the UKF in a similar manner to the weighting process in 

a PF. It was shown to outperform a PF as well as the Quantised 

Extended Kalman Filter (QEKF) presented in [17] . 
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Fig. 1. The Kalman filter is run independent of the truncation method, with the 

truncation being applied to the state estimate that is the output of the Kalman 

filter. The prediction step of the Kalman filter results in a probability distribution 

describing the state, x , conditioned on the system model, M . The measurement up- 

date step further conditions the state estimate on the observations, O . Finally, the 

truncation step conditions the estimate on the constraints acting on the state, C . 

The literature on soft inequality constraints has focused on con- 

straints with non-Gaussian distributions, where the constrained 

state estimates are, by necessity, calculated using numerical meth- 

ods. The main contribution of this paper is an analytical method 

for PDF truncation with soft constraints where the soft constraints 

are described by Gaussian distributions. This reduces the com- 

putational requirement compared to numerical methods, and it 

is shown to provide superior estimation performance compared 

to unconstrained and hard-constrained state estimation methods. 

The truncation approach presented in this paper is not limited to 

Kalman filters and can be applied to any constrained system using 

Gaussian distributions to represent the state and constraints. 

The rest of this paper is structured as follows: Section 2 intro- 

duces the constrained Kalman filtering problem, Section 3 shows 

how the state and constraints can be transformed such that each 

state has only one constraint acting on it, Section 4 presents the 

truncation method for a one-sided constraint, and Section 5 ex- 

tends this to an interval constraint. The performance of the meth- 

ods are evaluated in Section 6 , and the paper is concluded in 

Section 7 . Appendix A and Appendix B provide in-depth deriva- 

tions of the integrals used in this paper. 

2. Problem definition 

This paper adapts the notation used in [10] . A discrete linear 

time-invariant system is described by: 

x ( k ) = F x ( k − 1 ) + Gu ( k ) + w ( k ) 

y ( k ) = Hx ( k ) + v ( k ) (1) 

where k is the time index, x is the state vector with n states, u 

is the vector of known control inputs, and y is the vector of mea- 

surements. The vectors w and v contain the process and measure- 

ment noise respectively. The process noise, w , is assumed to be 

zero mean Gaussian white noise with a covariance matrix of Q . 

The measurement noise, v , is similarly assumed to be zero mean 

Gaussian white noise with a covariance matrix of R . The noises at 

each time-step are assumed to be independent. 

For the given system, the Kalman filter prediction equations are 

[18] : 

ˆ x (k | k − 1) = F ˆ x (k − 1 | k − 1) + Gu (k − 1) 

P (k | k − 1) = F P (k − 1 | k − 1) F T + Q (2) 

and the measurement update equations are: 

K = P (k | k − 1) H 

T 
(
HP (k | k − 1) H 

T + R 

)−1 

ˆ x (k | k ) = ˆ x (k | k − 1) + K 

(
y (k ) − H ̂  x (k | k − 1) 

)
P (k | k ) = P (k | k − 1) − K H P (k | k − 1) (3) 

where ˆ x (k | k ) is the state estimate, and P ( k | k ) is the covariance 

of the state estimate. The state estimate is initialised with ˆ x (0) = 

E[ x (0)] , where E [.] is the expectation operator. The covariance ma- 

trix is initialised with P (0) = E[( x (0) − ˆ x (0))( x (0) − ˆ x (0)) T ] . 

Now consider the following s linearly independent constraints 

on the system: 

A m 

( k ) ≤ φT 
m 

( k ) x ( k ) ≤ B m 

( k ) m = 1 , . . . , s (4) 

where the constraints are uncertain and normally distributed: 

A m 

(k ) ∼ N (μa,m 

, σ 2 
a,m 

) B m 

(k ) ∼ N (μb,m 

, σ 2 
b,m 

) (5) 

Eq. (4) describes a two-sided constraint on the linear function 

of the state described by φT 
m 

(k ) x (k ) . One sided constraints can be 

represented by setting μa,m 

= −∞ , or μb,m 

= ∞ , and hard con- 

straints can be implemented by setting σ a, m 

≈ 0 or σ b, m 

≈ 0 as 

required. 

Given an estimate ˆ x (k ) with covariance P ( k ) at time k , the 

problem is to truncate the Gaussian PDF N ( ̂  x (k ) , P (k )) using the 

s constraints described above, and then find the mean ˜ x (k ) and 

covariance ˜ P (k ) of the truncated PDF. The calculated mean and 

covariance represent the constrained estimate of the state. 

3. Transforming the state vector and constraints 

To apply the constraints via the truncation method, the state 

vector must be transformed so that the constraints are decoupled. 

This will result in s transformed constraints that each involve only 

one element of the transformed state, allowing the constraints to 

be enforced individually on each element of the transformed state. 

It should be noted that the order in which constraints are applied 

can change the final state estimate. However, if the initial con- 

straints are decoupled, the order of constraint application does not 

change the result [10] . 

The transformation process is outlined in [1] and [10] , and is 

summarised here in Eqs. (6) –(12) and (24) –(26) . For ease of nota- 

tion, the ( k ) after each variable will be dropped. Let the vector ˜ x i 
be the truncated state estimate, and the matrix ˜ P i be the covari- 

ance of ˜ x i , after the first i − 1 constraints have been enforced. To 

initialise the process: 

i = 1 ˜ x i = ˆ x ˜ P i = P (6) 

The transformed state vector is given by: 

z i = ρi W 

−1 / 2 
i 

T T i ( x − ˜ x i ) (7) 

where the matrices T i and W i are derived from the Jordan canoni- 

cal decomposition of ˜ P i : 

T i W i T 
T 
i = 

˜ P i (8) 

T i is an orthogonal matrix, and W i is a diagonal matrix. The 

matrix ρi is derived by the Gram–Schmidt orthogonalisation [19] 

which finds the orthogonal ρi that satisfies: 

ρi W 

1 / 2 
i 

T T i φi = 

[ 
( φT 

i 
˜ P i φi ) 

1 / 2 0 ... 0 

] T 
(9) 

Now only one element of z i is constrained, and the states in 

the transformed state vector z i are independent standard normal 

distributions. Let e i be the i th column of an n × n identity matrix. 

Transforming the constraints results in: 

C i ≤ e T i z i ≤ D i (10) 

where 

C i ∼ N (μc,i , σ
2 
c,i ) 

μc,i = 

μa,i − φT 
i ˜ x i √ 

φT 
i 

˜ P i φi 

σc,i = 

σa,i √ 

φT 
i 

˜ P i φi 

(11) 

and 

D i ∼ N (μd,i , σ
2 
d,i ) 

μd,i = 

μb,i − φT 
i ˜ x i √ 

φT 
i 

˜ P i φi 

σd,i = 

σb,i √ 

φT 
i 

˜ P i φi 

(12) 

The equations for calculating the standard deviation of each 

constraint are not present in [1,10] , but they are a trivial extension 

from the equations provided for calculating the mean. 
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