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a b s t r a c t 

A finite point process approach to multi-target localization from a transient signal is presented. After 

modeling the measurements as a Poisson point process, we propose a twofold scheme that includes an 

expectation maximization algorithm to estimate the target locations for a given number of targets and 

an information theoretic algorithm to select the number of targets. The proposed localization scheme 

does not require explicitly solving the data association problem and can account for clutter noise as well 

as missed detections. Although point process theory has been widely utilized for sequential tracking of 

multiple moving targets, the application of point process theory for multi-target localization from tran- 

sient measurements has received very little attention. The optimal subpattern assignment metric is used 

to assess the performance and accuracy of the proposed localization algorithm. Implementation of the 

proposed algorithm on synthetic data yields desirable results. The proposed algorithm is then applied to 

the multi-shooter localization problem using acoustic gunfire detection systems. 

Published by Elsevier B.V. 

1. Introduction 

This paper considers the problem of multi-target localization 

using transient signals from a single-sensor as well as multi-sensor 

point of view. Here it is assumed that target identification is not 

possible, and therefore, no association between measurements and 

targets are available. Furthermore, the number of targets in the 

surveillance region is unknown. Additionally, due to the limited 

range of the sensors, missed detections can occur and the presence 

of clutter can induce false alarms. An example of such a scenario is 

shooter localization using a network of acoustic gunfire detection 

systems (GDSs) [1] . The individual GDSs composed of a passive ar- 

ray of microphones are able to localize 1 a gunfire event by mea- 

suring the direction and times of arrival for both the acoustic wave 

generated by the muzzle blast and the shockwave generated by the 

supersonic bullet [2–5] . Due to echo, reverberation, and the dissi- 

pative nature of the acoustic signal, missed detections and false 

alarms are prevalent in acoustic source localization. Furthermore, 

due to the transient nature of the event, sequential observations 
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1 Localize means obtaining both the range and bearing from the array center to 

the target. 

are not available and recursive Bayesian tracking schemes cannot 

be employed. 

The multi-sensor fusion approach in [1] was designed for the 

case of a single shooter. The multi-target case is much more diffi- 

cult for multi-sensor fusion because measurements from different 

sensors generated by the same target must be associated before a 

fusion approach similar to [1] can be applied. This is essentially 

an S -dimensional (S-D) assignment problem, which is known to be 

NP-hard for S > 2 [6] . Numerous multi-target tracking techniques 

tackle the associated problem. Conventional multi-target tracking 

(MTT) approaches like Multiple Hypothesis Tracking (MHT) [7,8] or 

the Joint Probability Data Association (JPDA) filter [9,10] , which ad- 

dress the data-association problem, either are too computationally 

demanding or cannot be applied to the transient event localiza- 

tion problem since these approaches require persistent measure- 

ment signals and a fixed number of targets. In MHT, all possi- 

ble combinations of tracks and data associations are exhaustively 

evaluated; therefore, it is an impractical scheme since the num- 

ber of mappings between data and targets will grow exponen- 

tially with the number of targets [11,12] . Though more efficient 

than MHT, JPDA methods are not optimal since the detection is 

performed separately from tracking and cannot initiate tracks at 

low signal-to-clutter ratios [13] . A multi-target extension of the si- 

multaneous localization and mapping (SLAM) problem for stream- 

ing data is presented in [14] . The multi-target simultaneous lo- 

calization and mapping (MSLAM) scheme is based on the parallel 
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partition particle filter and it outperforms the well-known Fast- 

SLAM [15] when there are multiple targets in the surveillance area. 

An extension of MHT, known as the multi-hypothesis localization 

(MHL), for mobile robot localization is given in [16] . MHL uses a 

multi-hypothesis Kalman filter along with a probabilistic formula- 

tion of hypothesis correctness to generate and track Gaussian hy- 

potheses. However, almost all of the MTT techniques are recursive 

algorithms that require persistent observations and are futile in 

dealing with transient signals. 

A finite point process approach known as the probability hy- 

pothesis density (PHD) filter [17] , allows a more tractable imple- 

mentation of multi-target tracking approaches since it only propa- 

gates the first-order moment of the multi-target density. Moreover, 

the PHD filter [18] is able to handle a time-varying number of tar- 

gets, missed detections, and false alarms. Since the implementa- 

tion of an exact PHD filter is intractable, a sequential Monte Carlo 

(SMC) or particle filtering approach [19] and the Gaussian sum fil- 

tering scheme [20] have been devised to approximate the PHD fil- 

ter. Convergence properties for the particle PHD filter and Gaussian 

mixture PHD filter are presented in [21] and [22] , respectively. A 

RaoBlackwellized implementation of the PHD-SLAM filter proposed 

in [23] has shown to outperform FastSLAM in mapping and local- 

ization. An SMC implementation of a finite set statistical filter for 

the localization of an unknown number of speakers in a multipath 

environment using time difference of arrival (TDOA) measurements 

is given in [19,24–26] . Similar to traditional MTT algorithms, the 

PHD filter is a recursive Bayesian approach, which also requires 

persistent observations for track update. A finite point process ap- 

proach to maximum likelihood based multi-target localization of 

an unknown number of targets from transient signals has not been 

considered yet. 

Traditionally, multi-target localization involves the maximum 

likelihood based approach, where the selected model yields the 

maximum likelihood of observing the given data across a possible 

number of targets and all possible target-data associations. As the 

number of sensors increases, the possible combination of target- 

data associations dramatically increases, and the problem often be- 

comes intractable. Development of a multi-target detection and lo- 

calization scheme based on a probabilistic framework known as 

modeling field theory (MFT) is presented in [27] . Though the com- 

putational complexity of a MFT-based approach scales linearly with 

the size of the problem, it involves an iterative scheme similar to 

the expectation maximization (EM) and an ad-hoc likelihood ratio 

test is needed to prune the number of targets. An iterative maxi- 

mum likelihood optimization technique based on a modified deter- 

ministic annealing EM (MDAEM) algorithm for multi-target local- 

ization and velocity estimation using TDOAs is given in [28] . Since 

the MDAEM algorithm is executed for an assumed number of tar- 

gets, [29] provides a systematic approach for determining which 

of the target models estimated by the MDAEM algorithm are re- 

lated to the true targets. Both the MFT-based approach and the 

MDAEM algorithm require that the assumed number of targets is 

greater than or equal to the true number of targets. Also, the mea- 

surements are only assumed to contain clutter/false alarms and the 

problem of missed detection is not considered. 

For the multi-target localization problem considered here, we 

utilize the frequentist counterpart to the Bayesian filtering ap- 

proach, i.e., the maximum likelihood algorithm. The localization 

problem is formulated in two dimensions (2-D), where each sen- 

sor acquires several measurements and the proposed algorithm es- 

timates the number of targets and their corresponding locations 

based on the erroneous measurements. The number of targets is 

certainly different from the number of measurements due to clut- 

ter and missed detections. The proposed solution draws inspiration 

from recent efforts in finite set statistics for multiple target track- 

ing to localize multiple co-occurring transient events. The approach 

models the measurements for different sensors as conditionally in- 

dependent 2 Poisson point processes 3 (PPPs) with a mixture density 

representing the intensity function that is parameterized by the 

target locations. For N targets, this leads to an EM algorithm that 

iterates between soft association and solving N parallel 2-D maxi- 

mum searches. The main advantage of the proposed scheme is that 

it scales linearly with the size of the problem and avoids the curse 

of dimensionality associated with the traditional MHT-based multi- 

target localization scheme. For example, if there are N targets, L 

sensors, and m measurements per sensor, the computational com- 

plexity for the proposed scheme is on the order of O ( NLm ) while 

the computational complexity for the traditional scheme, which 

consider hard associations, is on the order of O ( N 

Lm ). Unlike the 

methods given in [27] and [28] , the proposed approach accounts 

for probability of detection and missed detections along with clut- 

ter and false alarms. 

The structure of this paper is as follows: the PPP model for 

the measurements is presented in Section 2 , and Section 3 uses 

the model to formulate the new multi-sensor fusion approach 

for multi-target localization via the EM framework. A numerical 

simulation demonstrating the multi-sensor algorithm is presented 

in Section 4 . Section 5 presents the results obtained from im- 

plementing the proposed algorithm on experimental data. Finally, 

Section 6 concludes the paper and discusses current research chal- 

lenges. 

2. PPP measurement model 

The problem of target localization from transient signals con- 

sists of a sensor (or a group of sensors) estimating the target loca- 

tions from observed transient events, e.g., shooter localization from 

gunfire events [1] . Due to the physical nature of the acoustic phe- 

nomenon associated with the gunfire event, the number of detec- 

tions and corresponding location estimates vastly differ from the 

number of shooters. To this end, this section models the measure- 

ments from each sensor as a random sample of a PPP [31] that is 

conditioned on ground-truth target (e.g., shooter) locations. A PPP 

on state space S = R 

d is defined as follows. 4 

Definition 1. A PPP � on R 

d with intensity measure � is a point 

process such that 

• For every compact set B ⊂ R 

d , the number of points in �∩ B is 

a Poisson random variable with mean �( B ), i.e., 

P ( N(B ) = k ) = 

exp ( −�(B ) ) �k (B ) 

k ! 
= Pois (k ;�(B )) (1) 

where N ( B ) denotes the cardinality of �∩ B . 
• Numbers of points of � in each of disjoint sets B 1 , . . . , B n 

are independent for every n ≥ 2, i.e., random variables 

N (B 1 ) , . . . , N (B n ) are mutually independent. 

If � admits a density λ, typically known as the intensity func- 

tion , then we may write 

P ( N(B ) = k ) = Pois 

(
k ;

∫ 
B 

λ(x ) dx 

)
, (2) 

where x ∈ B ⊂ R 

d . The intensity function represents the expected 

object density over the state space S . That is the expected number 

2 Throughout this paper, whenever measurement independence is assumed, it is 

conditioned on the truth. 
3 Here the term “processes” does not imply a dynamic, time varying quantity, 

rather point processes may consist of both time-independent and time-dependent 

random variables [30] . 
4 Definition 1 follows directly from definition 2.10 of [30] . Similar definitions of 

PPP can be found in page 11 of [32] , definition 8.7 of [33] and page 41 of [34] . 
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