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a b s t r a c t

The margin criterion for parameter learning in graphical models gained significant impact over the last

years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian

network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are

applied to determine the classifier structures. In the experiments, we demonstrate the advantages of

maximum margin optimized Bayesian network structures in terms of classification performance

compared to traditionally used discriminative structure learning methods. Stochastic simulated

annealing requires less score evaluations than greedy heuristics. Additionally, we compare generative

and discriminative parameter learning on both generatively and discriminatively structured Bayesian

network classifiers. Margin-optimized Bayesian network classifiers achieve similar classification

performance as support vector machines. Moreover, missing feature values during classification can

be handled by discriminatively optimized Bayesian network classifiers, a case where purely discrimi-

native classifiers usually require mechanisms to complete unknown feature values in the data first.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Generative probabilistic classifiers optimize the joint probability
distribution of the features X and the corresponding class labels C

using maximum likelihood (ML) estimation. The class label is
usually predicted using the maximum a posteriori estimate of the
class posteriors PðC9XÞ obtained by applying Bayes rule. Discrimi-
native probabilistic classifiers such as logistic regression model
PðC9XÞ directly. Discriminative classifiers may lead to better classi-
fication performance, particularly when the class conditional dis-
tributions poorly approximate the true distribution [1].

Basically, in Bayesian network classifiers both parameters and
structure can be learned either generatively or discriminatively [2].
Discriminative learning requires objective functions such as classifi-
cation rate (CR), conditional log-likelihood (CL), or the margin (as we
propose to use in this paper), that optimize the model for a particular
inference scenario, e.g. for a classification task. We are particularly
interested in learning the discriminative structure1 of a generative
Bayesian network classifier that factorize as PðC,XÞ ¼ PðX9CÞPðCÞ.

Learning the graph structure of a Bayesian network classifier is
hard. Optimally learning various forms of constrained Bayesian
network structures is NP-hard [3] even in the generative sense.
Recently, approaches for finding the globally optimal generative
Bayesian network structure have been proposed. These methods

are based on dynamic programming [4,5], branch-and-bound
techniques [6,7], or search over various variable orderings [8].
The experiments of these exact methods are restricted to � 50
variable nodes. Alternatively, approximate methods such as sto-
chastic search or greedy heuristics are used, which can handle
cases with many more variables.

Discriminative structure learning is not less difficult because of
the non-decomposability2 of the scores. Discriminative structure
learning methods – relevant for learning Bayesian network classifiers
– are usually approximate methods based on local search heuristics.
In [9], a greedy hill-climbing heuristic is used to learn a classifier
structure using the CR score. Particularly, at each iteration one edge is
added to the structure which complies with the restrictions of
the network topology and the acyclicity constraints of a Bayesian
network. In a similar algorithm, the CL has been applied for
discriminative structure learning [10]. Recently, we introduced a
computationally efficient order-based greedy search heuristic for
finding discriminative structures [2]. Our order-based structure
learning is based on the observations in [11] and shows similarities
to the K2 heuristic [12]. However, we proposed to use a discrimina-
tive scoring metric (i.e. CR) and suggest approaches for establishing
the variable ordering based on conditional mutual information [13].

One of the most successful discriminative classifiers, namely
the support vector machine (SVM), finds a decision boundary
which maximizes the margin between samples of distinct classes
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resulting in good generalization properties [14] of the classifier.
Recently, the margin criterion has been applied to learn the
parameters of probabilistic models. Taskar et al. [15] observed
that undirected graphical models can be efficiently trained to
maximize the margin. More recently, Guo et al. [16] introduced
the maximization of the margin for parameter learning based on
convex relaxation to Bayesian networks. We proposed to use a
conjugate gradient algorithm for maximum margin optimization
of the parameters and show its advantages with respect to
computational requirements [17]. Further generative and discri-
minative parameter learning methods for Bayesian network clas-
sifiers are summarized in [2,17] and references therein.

In this paper, we use the maximum margin (MM) criterion for
discriminative structure learning. We use greedy hill-climbing (HC)
and stochastic search heuristics such as simulated annealing (SA)
[18,19] for learning discriminative classifier structures. SA is less
prone to get stuck in local optima. We empirically evaluate our
margin-based discriminative structure learning heuristics on two
handwritten digit recognition tasks, one spam e-mail, and one remote
sensing data set. We use naive Bayes (NB) as well as generatively and
discriminatively optimized tree augmented naive Bayes (TAN) [20]
structures. Furthermore, we experimentally compare both discrimi-
native and generative parameter learning on both discriminative and
generatively structured Bayesian network classifiers. Maximum mar-
gin structure learning outperforms recently proposed generative and
discriminative structure learning approaches. SA heuristics mostly
lead to better performing structures at a lower number of score
evaluations (CR or MM) compared to HC methods. Discriminative
parameter learning produces a significantly better classification
performance than ML parameter learning on the same classifier
structure. This is especially valid for cases where the structure of
the underlying model is not optimized for classification [21]. We
introduced the MM score for structure learning in [22] using the HC
heuristic. The benefit of the MM score over other discriminative
scores (i.e. CR) remained open in [22] since the HC heuristic might get
trapped in local optimal solutions. This makes the reported perfor-
mance gain of the MM score during structure learning ambiguous—

either MM is useful, or the HC heuristic using CR gets stuck in low-
performing local optimal solutions. For this reason we use SA which
partially alleviates this problem. Recently, we also used the MM score
for exact structure learning of Bayesian network classifiers [23]. This
method is capable to find the global optimal solution. It is based on
branch-and-bound techniques within a linear programming frame-
work which offers the advantage of an any-time solution, i.e.
premature termination of the algorithm returns the currently best
solution together with a worst-case sub-optimality bound. Empiri-
cally it is shown that MM optimized structures compete with SVMs
and outperform generatively learned network structures. Unfortu-
nately, experiments are limited to rather small-scale data sets from
the UCI repository [24]. To overcome these limitations, we use
approximate methods for structure learning in this paper.

The paper is organized as follows: In Section 2, we introduce
Bayesian network classifiers as well as NB and TAN structures.
In Section 3, we present the non-decomposable discriminative
scores CL, CR, and MM. Additionally, we discuss techniques for
making the determination of these discriminative scores computa-
tionally competitive. Section 4 introduces different structure learn-
ing heuristics. Particular focus is on SA which is rarely used for
discriminative learning of Bayesian network structures. In Section 5,
we present experimental results. Section 6 concludes the paper.

2. Bayesian network classifiers

A Bayesian network [25] B¼/G,YS is a directed acyclic graph
G¼ ðZ,EÞ consisting of a set of nodes Z and a set of directed edges

E¼ fEZi ,Zj
,EZi ,Zk

, . . .g connecting the nodes where EZi ,Zj
is an edge

directed from Zi to Zj. This graph represents factorization properties
of the distribution of a set of random variables Z¼ fZ1, . . . ,ZNþ1g.
The variables in Z have values denoted by lower case letters
z¼ fz1,z2, . . . ,zNþ1g. We use boldface capital letters, e.g. Z, to denote
a set of random variables and correspondingly boldface lower case
letters denote a set of instantiations (values). Without loss of
generality, in Bayesian network classifiers the random variable
Z1 represents the class variable CAf1, . . . ,9C9g, where 9C9 represents
the number of classes and X1:N ¼ fX1, . . . ,XNg ¼ fZ2, . . . ,ZNþ1g

denotes the set of random variables representing the N attributes
of the classifier. In a Bayesian network each node is independent of
its non-descendants given its parents. The set of parameters which
quantify the network are represented by Y. Each random variable Zj

is represented as a local conditional probability distribution given
its parents ZPj

. We use yj
i9h to denote a specific conditional

probability table entry (assuming discrete variables); the probabil-
ity that variable Zj takes on its ith value assignment given that its
parents ZPj

take their hth assignment, i.e. yj
i9h ¼ PYðZj ¼ i9ZPj

¼ hÞ.
The training data consists of M independent and identically
distributed samples S ¼ fzmgMm ¼ 1 ¼ fðc

m,xm
1:NÞg

M
m ¼ 1 where M¼ 9S9.

The joint probability distribution of a Bayesian network factorizes
according to the graph structure and is given for a sample zm as

PYðZ¼ zmÞ ¼
YNþ1

j ¼ 1

PYðZj ¼ zm
j 9ZPj

¼ zm
Pj
Þ: ð1Þ

The class labels are predicted according to

cn ¼ argmax
cA f1,...,9C9g

PYðC ¼ c9X1:N ¼ xm
1:NÞ, ð2Þ

cn ¼ argmax
cA f1,...,9C9g

PYðC ¼ c,X1:N ¼ xm
1:NÞ, ð3Þ

where the last equality follows from neglecting PYðX1:NÞ in
PY ðC9X1:NÞ ¼ PYðC,X1:NÞ=PYðX1:NÞ.

In this work, we restrict ourselves to NB and TAN structures.
The NB network assumes that all the attributes are conditionally
independent given the class label. As reported in [20], the
performance of the NB classifier is surprisingly good even if the
conditional independence assumption between attributes is
unrealistic or even wrong for most of the data. Friedman et al.
[20] introduced the TAN classifier which is based on structural
augmentations of the NB network. In order to relax the condi-
tional independence properties of NB, each attribute may have at
most one other attribute as an additional parent. This means that
the tree-width of the attribute induced sub-graph is unity, i.e. we
have to learn a 1-tree over the attributes. A TAN classifier
structure is shown in Fig. 1. In [2], we noticed that k-trees over
the features – k indicates the tree-width3 – often do not improve

C

X1 X2 X3 XN

Fig. 1. An example of a TAN classifier structure.

3 The tree-width of a graph is defined as the size of the largest clique (i.e.

number of variables within the largest clique) of the moralized and triangulated

directed graph minus one. Since there can be multiple triangulated graphs, the

tree-width is defined by the triangulation where the largest clique contains the

fewest number of variables. More details are given in [26] and references therein.
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